Understanding covalency in molecular f-block compounds from the synergy of spectroscopy and quantum chemistry

Winter, M. J. Chemical Bonding 2nd edn (Oxford Univ. Press, 2016).

Aspinall, H. C. f-Block Chemistry (Oxford Univ. Press, 2020).

Kaltsoyannis, N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407–3413 (2013).

Article  CAS  PubMed  Google Scholar 

Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

Article  CAS  Google Scholar 

Kaltsoyannis, N. Transuranic computational chemistry. Chem. Eur. J. 24, 2815–2825 (2018).

Article  CAS  PubMed  Google Scholar 

Kerridge, A. Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem. Commun. 53, 6685–6695 (2017).

Article  CAS  Google Scholar 

Su, J. et al. Energy-degeneracy-driven covalency in actinide bonding. J. Am. Chem. Soc. 140, 17977–17984 (2018).

Article  CAS  PubMed  Google Scholar 

Lu, E. et al. Emergence of the structure-directing role of f-orbital overlap-driven covalency. Nat. Commun. 10, 634 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor, R. J. (ed.) Reprocessing and Recycling of Spent Nuclear Fuel (Elsevier, 2015).

Chandrasekar, A. & Ghanty, T. K. Uncovering heavy actinide covalency: implications for minor actinide partitioning. Inorg. Chem. 58, 3744–3753 (2019).

Article  CAS  PubMed  Google Scholar 

Oher, H. et al. Influence of the first coordination of uranyl on its luminescence properties: a study of uranyl binitrate with N,N-dialkyl amide DEHiBA and water. Inorg. Chem. 61, 890–901 (2022).

Article  CAS  PubMed  Google Scholar 

Tolu, D., Guillaumont, D. & de la Lande, A. Irradiation of plutonium tributyl phosphate complexes by ionizing alpha particles: a computational study. J. Phys. Chem. A 127, 7045–7057 (2023).

Article  CAS  PubMed  Google Scholar 

Fletcher, L. S. et al. Next-generation 3,3-alkoxyBTPs as complexants for minor actinide separation from lanthanides: a comprehensive separations, spectroscopic, and DFT study. Inorg. Chem. 63, 4819–4827 (2024).

Article  CAS  PubMed  Google Scholar 

Streit, M. & Ingold, F. Nitrides as a nuclear fuel option. J. Eur. Ceram. Soc. 25, 2687–2692 (2005).

Article  CAS  Google Scholar 

King, D. M. et al. Isolation and characterization of a uranium(VI)-nitride triple bond. Nat. Chem. 5, 482–488 (2013).

Article  CAS  PubMed  Google Scholar 

Jones, S., Boxall, C., Maher, C. & Taylor, R. A review of the reprocessability of uranium nitride based fuels. Prog. Nucl. Energy 165, 104917 (2023).

Article  CAS  Google Scholar 

Jensen, F. Introduction to Computational Chemistry 3rd edn (Wiley, 2016).

Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J.-P. & Bursten, B. E. in The Chemistry of the Actinide and Transactinide Elements 3rd edn (eds Morss, L. R. et al.) 1893–2012 (Springer, 2006).

Kaltsoyannis, N. & Kerridge, A. in The Chemical Bond: Fundamental Aspects of Chemical Bonding (eds Frenking, G. & Shaik, S.) 337–356 (Wiley-VCH, 2014).

Hayton, T. W. & Kaltsoyannis, N. in Experimental and Theoretical Approaches to Actinide Chemistry (eds Gibson, J. K. & de Jong, W. A.) 181–236 (Wiley, 2018).

Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

Article  Google Scholar 

Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

Article  Google Scholar 

Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

Article  CAS  Google Scholar 

Casida, M. E. in Recent Developments and Applications of Modern Density Functional Theory (ed. Seminario, J. M.) 391–439 (Elsevier, 1996).

Čížek, J. On correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 45, 4256–4266 (1966).

Article  Google Scholar 

Löwdin, P. O. Quantum theory of many-particle systems. 1. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474–1489 (1955).

Article  Google Scholar 

Roos, B. O., Taylor, P. R. & Siegbahn, P. E. M. A complete active space SCF method (CASSCF) using a density-matrix formulated super-CI approach. Chem. Phys. 48, 157–173 (1980).

Article  CAS  Google Scholar 

Malmqvist, P. A., Rendell, A. & Roos, B. O. The restricted active space self-consistent-field method, implemented with a split graph unitary-group approach. J. Phys. Chem. 94, 5477–5482 (1990).

Article  CAS  Google Scholar 

de Groot, F. Multiplet effects in X-ray spectroscopy. Coord. Chem. Rev. 249, 31–63 (2005).

Article  Google Scholar 

Atanasov, M. et al. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev. 289, 177–214 (2015).

Article  Google Scholar 

Jung, J. L., Atanasov, M. & Neese, F. Ab initio ligand-field theory analysis and covalency trends in actinide and lanthanide free ions and octahedral complexes. Inorg. Chem. 56, 8802–8816 (2017).

Article  CAS  PubMed  Google Scholar 

Ungur, L. & Chibotaru, L. F. Ab initio crystal field for lanthanides. Chem. Eur. J. 23, 3708–3718 (2017).

Article  CAS  PubMed  Google Scholar 

Autschbach, J. Orbitals: some fiction and some facts. J. Chem. Educ. 89, 1032–1040 (2012).

Article  CAS  Google Scholar 

Glendening, E. D. & Weinhold, F. Natural resonance theory: II. Natural bond order and valency. J. Comput. Chem. 19, 610–627 (1998).

Article  CAS  Google Scholar 

Weinhold, F. & Landis, C. R. Discovering Chemistry with Natural Bond Orbitals (Wiley, 2012).

Martin, R. L. Natural transition orbitals. J. Chem. Phys. 118, 4775–4777 (2003).

Article  CAS  Google Scholar 

Wiberg, K. B. Application of Pople-Santry-Segal complete neglect of differential overlap method to some hydrocarbons and their cations. J. Am. Chem. Soc. 90, 59–63 (1968).

Article  CAS  Google Scholar 

Mayer, I. Charge, bond order and valence in the ab initio SCF theory. Chem. Phys. Lett. 97, 270–274 (1983).

Article  CAS  Google Scholar 

Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Clarendon, 1990).

Tassell, M. J. & Kaltsoyannis, N. Covalency in AnCp4 (An = Th–Cm): a comparison of molecular orbital, natural population and atoms-in-molecules analyses. Dalton Trans. 39, 6719–6725 (2010).

Article  CAS  PubMed  Google Scholar 

Kirker, I. & Kaltsoyannis, N. Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th–Cm; Cp = η5-C5H5). Dalton Trans. 40, 124–131 (2011).

Article  CAS  PubMed  Google Scholar 

Blanco, M. A., Pendás, A. M. & Francisco, E. Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 1, 1096–1109 (2005).

Article  CAS  PubMed  Google Scholar 

Cho, H., de Jong, W. A. & Soderquist, C. Z. Probing the oxygen environment in UO22+ by solid-state 17O nuclear magnetic resonance spectroscopy and relativistic density functional calculations. J. Chem. Phys. 132, 084501 (2010).

Article  PubMed  Google Scholar 

Martel, L. et al. High-resolution solid-state oxygen-17 NMR of actinide-bearing compounds: an insight into the 5f chemistry. Inorg. Chem. 53, 6928–6933 (2014).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif