Winter, M. J. Chemical Bonding 2nd edn (Oxford Univ. Press, 2016).
Aspinall, H. C. f-Block Chemistry (Oxford Univ. Press, 2020).
Kaltsoyannis, N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407–3413 (2013).
Article CAS PubMed Google Scholar
Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).
Kaltsoyannis, N. Transuranic computational chemistry. Chem. Eur. J. 24, 2815–2825 (2018).
Article CAS PubMed Google Scholar
Kerridge, A. Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem. Commun. 53, 6685–6695 (2017).
Su, J. et al. Energy-degeneracy-driven covalency in actinide bonding. J. Am. Chem. Soc. 140, 17977–17984 (2018).
Article CAS PubMed Google Scholar
Lu, E. et al. Emergence of the structure-directing role of f-orbital overlap-driven covalency. Nat. Commun. 10, 634 (2019).
Article CAS PubMed PubMed Central Google Scholar
Taylor, R. J. (ed.) Reprocessing and Recycling of Spent Nuclear Fuel (Elsevier, 2015).
Chandrasekar, A. & Ghanty, T. K. Uncovering heavy actinide covalency: implications for minor actinide partitioning. Inorg. Chem. 58, 3744–3753 (2019).
Article CAS PubMed Google Scholar
Oher, H. et al. Influence of the first coordination of uranyl on its luminescence properties: a study of uranyl binitrate with N,N-dialkyl amide DEHiBA and water. Inorg. Chem. 61, 890–901 (2022).
Article CAS PubMed Google Scholar
Tolu, D., Guillaumont, D. & de la Lande, A. Irradiation of plutonium tributyl phosphate complexes by ionizing alpha particles: a computational study. J. Phys. Chem. A 127, 7045–7057 (2023).
Article CAS PubMed Google Scholar
Fletcher, L. S. et al. Next-generation 3,3-alkoxyBTPs as complexants for minor actinide separation from lanthanides: a comprehensive separations, spectroscopic, and DFT study. Inorg. Chem. 63, 4819–4827 (2024).
Article CAS PubMed Google Scholar
Streit, M. & Ingold, F. Nitrides as a nuclear fuel option. J. Eur. Ceram. Soc. 25, 2687–2692 (2005).
King, D. M. et al. Isolation and characterization of a uranium(VI)-nitride triple bond. Nat. Chem. 5, 482–488 (2013).
Article CAS PubMed Google Scholar
Jones, S., Boxall, C., Maher, C. & Taylor, R. A review of the reprocessability of uranium nitride based fuels. Prog. Nucl. Energy 165, 104917 (2023).
Jensen, F. Introduction to Computational Chemistry 3rd edn (Wiley, 2016).
Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J.-P. & Bursten, B. E. in The Chemistry of the Actinide and Transactinide Elements 3rd edn (eds Morss, L. R. et al.) 1893–2012 (Springer, 2006).
Kaltsoyannis, N. & Kerridge, A. in The Chemical Bond: Fundamental Aspects of Chemical Bonding (eds Frenking, G. & Shaik, S.) 337–356 (Wiley-VCH, 2014).
Hayton, T. W. & Kaltsoyannis, N. in Experimental and Theoretical Approaches to Actinide Chemistry (eds Gibson, J. K. & de Jong, W. A.) 181–236 (Wiley, 2018).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).
Casida, M. E. in Recent Developments and Applications of Modern Density Functional Theory (ed. Seminario, J. M.) 391–439 (Elsevier, 1996).
Čížek, J. On correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 45, 4256–4266 (1966).
Löwdin, P. O. Quantum theory of many-particle systems. 1. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474–1489 (1955).
Roos, B. O., Taylor, P. R. & Siegbahn, P. E. M. A complete active space SCF method (CASSCF) using a density-matrix formulated super-CI approach. Chem. Phys. 48, 157–173 (1980).
Malmqvist, P. A., Rendell, A. & Roos, B. O. The restricted active space self-consistent-field method, implemented with a split graph unitary-group approach. J. Phys. Chem. 94, 5477–5482 (1990).
de Groot, F. Multiplet effects in X-ray spectroscopy. Coord. Chem. Rev. 249, 31–63 (2005).
Atanasov, M. et al. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev. 289, 177–214 (2015).
Jung, J. L., Atanasov, M. & Neese, F. Ab initio ligand-field theory analysis and covalency trends in actinide and lanthanide free ions and octahedral complexes. Inorg. Chem. 56, 8802–8816 (2017).
Article CAS PubMed Google Scholar
Ungur, L. & Chibotaru, L. F. Ab initio crystal field for lanthanides. Chem. Eur. J. 23, 3708–3718 (2017).
Article CAS PubMed Google Scholar
Autschbach, J. Orbitals: some fiction and some facts. J. Chem. Educ. 89, 1032–1040 (2012).
Glendening, E. D. & Weinhold, F. Natural resonance theory: II. Natural bond order and valency. J. Comput. Chem. 19, 610–627 (1998).
Weinhold, F. & Landis, C. R. Discovering Chemistry with Natural Bond Orbitals (Wiley, 2012).
Martin, R. L. Natural transition orbitals. J. Chem. Phys. 118, 4775–4777 (2003).
Wiberg, K. B. Application of Pople-Santry-Segal complete neglect of differential overlap method to some hydrocarbons and their cations. J. Am. Chem. Soc. 90, 59–63 (1968).
Mayer, I. Charge, bond order and valence in the ab initio SCF theory. Chem. Phys. Lett. 97, 270–274 (1983).
Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Clarendon, 1990).
Tassell, M. J. & Kaltsoyannis, N. Covalency in AnCp4 (An = Th–Cm): a comparison of molecular orbital, natural population and atoms-in-molecules analyses. Dalton Trans. 39, 6719–6725 (2010).
Article CAS PubMed Google Scholar
Kirker, I. & Kaltsoyannis, N. Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th–Cm; Cp = η5-C5H5). Dalton Trans. 40, 124–131 (2011).
Article CAS PubMed Google Scholar
Blanco, M. A., Pendás, A. M. & Francisco, E. Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 1, 1096–1109 (2005).
Article CAS PubMed Google Scholar
Cho, H., de Jong, W. A. & Soderquist, C. Z. Probing the oxygen environment in UO22+ by solid-state 17O nuclear magnetic resonance spectroscopy and relativistic density functional calculations. J. Chem. Phys. 132, 084501 (2010).
Martel, L. et al. High-resolution solid-state oxygen-17 NMR of actinide-bearing compounds: an insight into the 5f chemistry. Inorg. Chem. 53, 6928–6933 (2014).
留言 (0)