Molecular-docking electrolytes enable high-voltage lithium battery chemistries

Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, H. et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022).

Article  CAS  Google Scholar 

Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).

Article  CAS  PubMed  Google Scholar 

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

Article  CAS  PubMed  Google Scholar 

Placke, T., Kloepsch, R., Dühnen, S. & Winter, M. Lithium ion, lithium metal and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electr. 21, 1939–1964 (2017).

Article  CAS  Google Scholar 

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

Article  CAS  PubMed  Google Scholar 

Li, M., Wang, C., Chen, Z., Xu, K. & Lu, J. New concepts in electrolytes. Chem. Rev. 120, 6783–6819 (2020).

Article  CAS  PubMed  Google Scholar 

Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

Article  CAS  Google Scholar 

Cheng, H. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022).

Article  CAS  Google Scholar 

Chen, X. & Zhang, Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53, 1992–2002 (2020).

Article  CAS  PubMed  Google Scholar 

Xu, K. & Cresce, A. V. W. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. J. Mater. Res. 27, 2327–2341 (2012).

Article  CAS  Google Scholar 

Zhang, S. S. Design aspects of electrolytes for fast charge of Li‐ion batteries. InfoMat 3, 125–130 (2020).

Article  Google Scholar 

Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

Article  CAS  Google Scholar 

Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

Article  CAS  PubMed  Google Scholar 

Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

Article  CAS  PubMed  Google Scholar 

Peng, Z. et al. High‐power lithium metal batteries enabled by high‐concentration acetonitrile‐based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020).

Article  CAS  Google Scholar 

Dokko, K. et al. Solvate ionic liquid electrolyte for Li–S batteries. J. Electrochem. Soc. 160, A1304 (2013).

Article  CAS  Google Scholar 

Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

Article  Google Scholar 

Cao, X., Jia, H., Xu, W. & Zhang, J.-G. Localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021).

Article  CAS  Google Scholar 

Zhao, Y. et al. Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries. Chem 9, 682–697 (2023).

Article  CAS  Google Scholar 

Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

Article  CAS  Google Scholar 

Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

Article  CAS  Google Scholar 

Jiang, Z. et al. Fluorobenzene, a low-density, economical and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv. Funct. Mater. 31, 2005991 (2020).

Article  Google Scholar 

Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

Article  CAS  Google Scholar 

Piao, N. et al. Countersolvent electrolytes for lithium‐metal batteries. Adv. Energy Mater. 10, 1903568 (2020).

Article  CAS  Google Scholar 

Wang, Z. et al. Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Mater. 30, 228–237 (2020).

Article  Google Scholar 

Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

Article  CAS  Google Scholar 

Zhao, Y. et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Y., Zhou, T., Mensi, M., Choi, J. W. & Coskun, A. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 14, 299 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries. Chem. Soc. Rev. 52, 2713–2763 (2023).

Article  CAS  PubMed  Google Scholar 

Li, Z. et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 14, 868 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Chen, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).

Article  CAS  PubMed  Google Scholar 

Chen, X., Zhang, X.-Q., Li, H.-R. & Zhang, Q. Cation-solvent, cation-anion and solvent–solvent interactions with electrolyte solvation in lithium batteries. Batteries Supercaps 2, 128–131 (2019).

Article  CAS  Google Scholar 

Yao, Y. X. et al. Regulating interfacial chemistry in lithium‐ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2020).

Article  Google Scholar 

Lee, H. S., Yang, X. Q., McBreen, J., Okamoto, Y. & Choi, L. S. A new family of anion receptors and their effect on ion pair dissociation and conductivity of lithium salts in non-aqueous solutions. Electrochim. Acta 40, 2353–2356 (1995).

Article  CAS  Google Scholar 

Lee, H. S., Yang, X. Q., Xiang, C. L., McBreen, J. & Choi, L. S. The synthesis of a new family of boron‐based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions. J. Electrochem. Soc. 145, 2813 (1998).

Article  CAS  Google Scholar 

Li, L. F. et al. New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors. J. Power Sources 184, 517–521 (2008).

留言 (0)

沒有登入
gif