Protein semisynthesis reveals plasticity in HECT E3 ubiquitin ligase mechanisms

Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61, 761–807 (1992).

Article  CAS  PubMed  Google Scholar 

Scheffner, M., Nuber, U. & Huibregtse, J. M. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

Article  CAS  PubMed  Google Scholar 

Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

Article  CAS  PubMed  Google Scholar 

Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harper, J. W. & Schulman, B. A. Cullin-RING ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis. Annu. Rev. Biochem. 90, 403–429 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10, 398–409 (2009).

Article  CAS  PubMed  Google Scholar 

Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

Article  CAS  PubMed  Google Scholar 

Weber, J., Polo, S. & Maspero, E. HECT E3 ligases: a tale with multiple facets. Front. Physiol. 10, 370 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer, E. S. et al. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA 92, 2563–2567 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernassola, F., Karin, M., Ciechanover, A. & Melino, G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14, 10–21 (2008).

Article  CAS  PubMed  Google Scholar 

Maddika, S. et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat. Cell Biol. 13, 728–733 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Scheffner, M. & Kumar, S. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim. Biophys. Acta 1843, 61–74 (2014).

Article  CAS  PubMed  Google Scholar 

Buetow, L. & Huang, D. T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17, 626–642 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

Article  CAS  PubMed  Google Scholar 

Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

Article  CAS  PubMed  Google Scholar 

Trotman, L. C. et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128, 141–156 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129–139 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, H. et al. Enzymatic analysis of WWP2 E3 ubiquitin ligase using protein microarrays identifies autophagy-related substrates. J. Biol. Chem. 298, 101854 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fajner, V., Maspero, E. & Polo, S. Targeting HECT-type E3 ligases—insights from catalysis, regulation and inhibitors. FEBS Lett. 591, 2636–2647 (2017).

Article  CAS  PubMed  Google Scholar 

Lorenz, S. Structural mechanisms of HECT-type ubiquitin ligases. Biol. Chem. 399, 127–145 (2018).

Article  CAS  PubMed  Google Scholar 

Verdecia, M. A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 11, 249–259 (2003).

Article  CAS  PubMed  Google Scholar 

Maspero, E. et al. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat. Struct. Mol. Biol. 20, 696–701 (2013).

Article  CAS  PubMed  Google Scholar 

Paik, W. K., Pearson, D., Lee, H. W. & Kim, S. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 213, 513–522 (1970).

Article  CAS  PubMed  Google Scholar 

Berg, J. M. & Lorsch, J. R. Mechanism of ribosomal peptide bond formation. Science 291, 203 (2001).

Article  CAS  PubMed  Google Scholar 

Wolf, E., De Angelis, J., Khalil, E. M., Cole, P. A. & Burley, S. K. X-ray crystallographic studies of serotonin N-acetyltransferase catalysis and inhibition. J. Mol. Biol. 317, 215–224 (2002).

Article  CAS  PubMed  Google Scholar 

Kee, Y. & Huibregtse, J. M. Regulation of catalytic activities of HECT ubiquitin ligases. Biochem. Biophys. Res. Commun. 354, 329–333 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jencks, W. P. Requirements for general acid-base catalysis of complex reactions. J. Am. Chem. Soc. 94, 4731–4732 (1972).

Article  CAS  Google Scholar 

Richard, J. P., Huber, R. E., Heo, C., Amyes, T. L. & Lin, S. Structure-reactivity relationships for β-galactosidase (Escherichia coli, lac Z). 4. Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermediates of E461G and E461Q β-galactosidases. Biochemistry 35, 12387–12401 (1996).

留言 (0)

沒有登入
gif