Ch’In KY, Tang MY. Congenital adenomatoid malformation of one lobe of a lung with general anasarca. Arch Pathol (Chic). 1949;48(3):221–9.
Leblanc C, Baron M, Desselas E, Phan MH, Rybak A, Thouvenin G, et al. Congenital pulmonary airway malformations: state-of-the-art review for pediatrician’s use. Eur J Pediatr. 2017;176(12):1559–71. https://doi.org/10.1007/s00431-017-3032-7.
Article CAS PubMed Google Scholar
Parikh DH, Rasiah SV. Congenital lung lesions: postnatal management and outcome. Semin Pediatr Surg. 2015;24(4):160–7. https://doi.org/10.1053/j.sempedsurg.2015.01.013.
Stocker JT, Madewell JE, Drake RM. Congenital cystic adenomatoid malformation of the lung. Classification and morphologic spectrum. Hum Pathol. 1977;8(2):155–71. https://doi.org/10.1016/s0046-8177(77)80078-6.
Article CAS PubMed Google Scholar
Barazzone-Argiroffo C, Lascano Maillard J, Vidal I, Bochaton-Piallat ML, Blaskovic S, Donati Y, et al. New insights on congenital pulmonary airways malformations revealed by proteomic analyses. Orphanet J Rare Dis. 2019;14(1):272. https://doi.org/10.1186/s13023-019-1192-4.
Article CAS PubMed PubMed Central Google Scholar
Szafranski P, Coban-Akdemir ZH, Rupps R, Grazioli S, Wensley D, Jhangiani SN, et al. Phenotypic expansion of TBX4 mutations to include acinar dysplasia of the lungs. Am J Med Genet A. 2016;170(9):2440–4. https://doi.org/10.1002/ajmg.a.37822.
Article CAS PubMed Google Scholar
Karolak JA, Vincent M, Deutsch G, Gambin T, Cogne B, Pichon O, et al. Complex compound inheritance of Lethal Lung Developmental disorders due to disruption of the TBX-FGF pathway. Am J Hum Genet. 2019;104(2):213–28. https://doi.org/10.1016/j.ajhg.2018.12.010.
Article CAS PubMed PubMed Central Google Scholar
Barnett CP, Nataren NJ, Klingler-Hoffmann M, Schwarz Q, Chong CE, Lee YK, et al. Ectrodactyly and Lethal Pulmonary Acinar Dysplasia Associated with homozygous FGFR2 mutations identified by Exome sequencing. Hum Mutat. 2016;37(9):955–63. https://doi.org/10.1002/humu.23032.
Article CAS PubMed Google Scholar
Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D, et al. DICER1 mutations in familial pleuropulmonary blastoma. Science. 2009;325(5943):965. https://doi.org/10.1126/science.1174334.
Article CAS PubMed PubMed Central Google Scholar
Messinger YH, Stewart DR, Priest JR, Williams GM, Harris AK, Schultz KA, et al. Pleuropulmonary blastoma: a report on 350 central pathology-confirmed pleuropulmonary blastoma cases by the International Pleuropulmonary Blastoma Registry. Cancer. 2015;121(2):276–85. https://doi.org/10.1002/cncr.29032.
Dehner LP, Messinger YH, Williams GM, Stewart DR, Harney LA, Schultz KA, et al. Type I Pleuropulmonary Blastoma versus congenital pulmonary airway malformation type IV. Neonatology. 2017;111(1):76. https://doi.org/10.1159/000447992.
Nelson ND, Xu F, Chandrasekaran P, Litzky LA, Peranteau WH, Frank DB, et al. Defining the spatial landscape of KRAS mutated congenital pulmonary airway malformations: a distinct entity with a spectrum of histopathologic features. Mod Pathol. 2022;35(12):1870–81. https://doi.org/10.1038/s41379-022-01129-0.
Article CAS PubMed PubMed Central Google Scholar
Nelson ND, Xu F, Peranteau WH, Li M, Pogoriler J. Morphologic features in congenital pulmonary Airway malformations and Pulmonary sequestrations Correlate with Mutation Status: a mechanistic Approach to classification. Am J Surg Pathol. 2023;47(5):568–79. https://doi.org/10.1097/PAS.0000000000002025.
Post M, Souza P, Liu J, Tseu I, Wang J, Kuliszewski M, et al. Keratinocyte growth factor and its receptor are involved in regulating early lung branching. Development. 1996;122(10):3107–15. https://doi.org/10.1242/dev.122.10.3107.
Article CAS PubMed Google Scholar
Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development. 1997;124(23):4867–78. https://doi.org/10.1242/dev.124.23.4867.
Article CAS PubMed Google Scholar
Lezmi G, Verkarre V, Khen-Dunlop N, Vibhushan S, Hadchouel A, Rambaud C, et al. FGF10 Signaling differences between type I pleuropulmonary blastoma and congenital cystic adenomatoid malformation. Orphanet J Rare Dis. 2013;8:130. https://doi.org/10.1186/1750-1172-8-130.
Article PubMed PubMed Central Google Scholar
Gonzaga S, Henriques-Coelho T, Davey M, Zoltick PW, Leite-Moreira AF, Correia-Pinto J, et al. Cystic adenomatoid malformations are induced by localized FGF10 overexpression in fetal rat lung. Am J Respir Cell Mol Biol. 2008;39(3):346–55. https://doi.org/10.1165/rcmb.2007-0290OC.
Article CAS PubMed Google Scholar
Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X. Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci U S A. 2006;103(7):2208–13. https://doi.org/10.1073/pnas.0510839103.
Article CAS PubMed PubMed Central Google Scholar
Boucherat O, Landry-Truchon K, Berube-Simard FA, Houde N, Beuret L, Lezmi G, et al. Epithelial inactivation of Yy1 abrogates lung branching morphogenesis. Development. 2015;142(17):2981–95. https://doi.org/10.1242/dev.120469.
Article CAS PubMed Google Scholar
Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18(1):8–23. https://doi.org/10.1016/j.devcel.2009.12.010.
Article CAS PubMed PubMed Central Google Scholar
Lezmi G, Vibhushan S, Bevilaqua C, Crapart N, Cagnard N, Khen-Dunlop N, et al. Congenital cystic adenomatoid malformations of the lung: an epithelial transcriptomic approach. Respir Res. 2020;21(1):43. https://doi.org/10.1186/s12931-020-1306-5.
Article CAS PubMed PubMed Central Google Scholar
Morotti RA, Gutierrez MC, Askin F, Profitt SA, Wert SE, Whitsett JA, et al. Expression of thyroid transcription factor-1 in congenital cystic adenomatoid malformation of the lung. Pediatr Dev Pathol. 2000;3(5):455–61. https://doi.org/10.1007/s100240010092.
Article CAS PubMed Google Scholar
Volpe MV, Pham L, Lessin M, Ralston SJ, Bhan I, Cutz E, et al. Expression of Hoxb-5 during human lung development and in congenital lung malformations. Birth Defects Res Clin Mol Teratol. 2003;67(8):550–6. https://doi.org/10.1002/bdra.10086.
Ochieng JK, Schilders K, Kool H, Boerema-De Munck A, Buscop-Van Kempen M, Gontan C, et al. Sox2 regulates the emergence of lung basal cells by directly activating the transcription of Trp63. Am J Respir Cell Mol Biol. 2014;51(2):311–22. https://doi.org/10.1165/rcmb.2013-0419OC.
Article CAS PubMed Google Scholar
Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R. Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol. 2008;317(1):296–309. https://doi.org/10.1016/j.ydbio.2008.02.035.
Article CAS PubMed Google Scholar
Peranteau WH, Boelig MM, Khalek N, Moldenhauer JS, Martinez-Poyer J, Hedrick HL, et al. Effect of single and multiple courses of maternal betamethasone on prenatal congenital lung lesion growth and fetal survival. J Pediatr Surg. 2016;51(1):28–32. https://doi.org/10.1016/j.jpedsurg.2015.10.018.
Peranteau WH, Wilson RD, Liechty KW, Johnson MP, Bebbington MW, Hedrick HL, et al. Effect of maternal betamethasone administration on prenatal congenital cystic adenomatoid malformation growth and fetal survival. Fetal Diagn Ther. 2007;22(5):365–71. https://doi.org/10.1159/000103298.
留言 (0)