CCT6A promotes cell proliferation in colon cancer by targeting BIRC5 associated with p53 status

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA A Cancer J Clin. 2020;70:7–30.

Article  Google Scholar 

Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA A Cancer J Clin. 2017;67:7–30.

Article  Google Scholar 

Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, et al. Colorectal cancer statistics, 2017. CA A Cancer J Clin. 2017;67:177–93.

Article  Google Scholar 

Leitner A, Joachimiak LA, Bracher A, Monkemeyer L, Walzthoeni T, Chen B, et al. The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure. 2012;20:814–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell. 2003;113:369–81.

Article  CAS  PubMed  Google Scholar 

Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016;353:aac4354.

Article  PubMed  Google Scholar 

Balchin D, Milicic G, Strauss M, Hayer-Hartl M, Hartl FU. Pathway of actin folding directed by the eukaryotic chaperonin TRiC. Cell. 2018;174:1507–21.e1516.

Article  CAS  PubMed  Google Scholar 

Gestaut D, Roh SH, Ma B, Pintilie G, Joachimiak LA, Leitner A, et al. The chaperonin TRiC/CCT associates with prefoldin through a conserved electrostatic interface essential for cellular proteostasis. Cell. 2019;117:751–65.e15.

Yao L, Zou X, Liu L. The TCP1 ring complex is associated with malignancy and poor prognosis in hepatocellular carcinoma. Int J Clin Exp Pathol. 2019;12:3329–43.

CAS  PubMed  PubMed Central  Google Scholar 

Li W, Liu J, Zhao H. Prognostic power of a chaperonin containing TCP-1 subunit genes panel for hepatocellular carcinoma. Front Genetics. 2021;12:668871.

Article  CAS  Google Scholar 

Guest ST, Kratche ZR, Bollig-Fischer A, Haddad R, Ethier SP. Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes. Exp cell Res. 2015;332:223–35.

Article  CAS  PubMed  Google Scholar 

Coghlin C, Carpenter B, Dundas SR, Lawrie LC, Telfer C, Murray GI. Characterization and over-expression of chaperonin t-complex proteins in colorectal cancer. J Pathol. 2006;210:351–7.

Article  CAS  PubMed  Google Scholar 

Yin H, Miao X, Wu Y, Wei Y, Zong G, Yang S, et al. The role of the Chaperonin containing t-complex polypeptide 1, subunit 8 (CCT8) in B-cell non-Hodgkin’s lymphoma. Leukemia Res. 2016;45:59–67.

Article  CAS  Google Scholar 

Xiang B, Chatti K, Qiu H, Lakshmi B, Krasnitz A, Hicks J, et al. Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proc Natl Acad Sci USA. 2008;105:12463–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66:105–43.

Article  CAS  PubMed  Google Scholar 

Ying Z, Tian H, Li Y, Lian R, Li W, Wu S, et al. CCT6A suppresses SMAD2 and promotes prometastatic TGF-beta signaling. J Clin Invest. 2017;127:1725–40.

Article  PubMed  PubMed Central  Google Scholar 

Tanic N, Brkic G, Dimitrijevic B, Dedovic-Tanic N, Gefen N, Benharroch D, et al. Identification of differentially expressed mRNA transcripts in drug-resistant versus parental human melanoma cell lines. Anticancer Res. 2006;26:2137–42.

CAS  PubMed  Google Scholar 

Myung JK, Afjehi-Sadat L, Felizardo-Cabatic M, Slavc I, Lubec G. Expressional patterns of chaperones in ten human tumor cell lines. Proteome Sci. 2004;2:8.

Article  PubMed  PubMed Central  Google Scholar 

Hassin O, Nataraj NB, Shreberk-Shaked M, Aylon Y, Yaeger R, Fontemaggi G, et al. Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients. Nat Commun. 2022;13:2800.

Nakayama M, Oshima M. Mutant p53 in colon cancer. J Mol Cell Biol. 2019;11:267–76.

Article  CAS  PubMed  Google Scholar 

Huang Y, Liu N, Liu J, Liu Y, Zhang C, Long S, et al. Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle. 2019;18:3442–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2:466–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012;26:1268–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Li Y, Sheng J, Wu F, Song W. P53-R273H mutation enhances colorectal cancer stemness through regulating specific lncRNAs. J Exp Clin Cancer Res. 2019;38:379.

Garg A, Hazra JP, Sannigrahi M, Rakshit S, Sinha S. Variable mutations at the P53-R273 oncogenic hotspot position leads to altered roperties. Biophys J. 2019;118:720–8.

Lei, J. Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations. Phys Chem Chem Phys. 2020;22:23032.

Tan BS, Tiong KH, Choo HL, Fei-Lei Chung F, Hii LW, Tan SH, et al. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis. 2015;6:e1826.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rochette PJ, Bastien N, Lavoie J, Guérin SL, Drouin R. SW480, a p53 double-mutant cell line retains proficiency for some p53 functions. J Mol Biol. 2005;352:44–57.

Article  CAS  PubMed  Google Scholar 

Ambrosini G, Adida C, Altieri DC, Ambrosini G, Adida C, Altieri DCA. novel antiapoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3:917–21.

Article  CAS  PubMed  Google Scholar 

Yoshida A, Zokumasu K, Wano Y, Yamauchi T, Imamura S, Takagi K, et al. Marked upregulation of survivin and aurora-B kinase is associated with disease progression in the myelodysplastic syndromes. Haematologica. 2012;97:1372–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sah NK, Seniya C. Survivin splice variants and their diagnostic significance. Tumor Biol. 2015;36:6623–31.

Article  CAS  Google Scholar 

Mirza A, Mcguirk M, Hockenberry TN, Wu Q, Ashar H, Black S, et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene. 2002;21:2613–22.

Article  CAS  PubMed  Google Scholar 

Tang Q, Efe G, Chiarella AM, Leung J, Chen M, Yamazoe T, et al. Mutant p53 regulates survivin to foster lung metastasis. Genes Dev. 2021;35:528–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Fukuda S, Pelus LM. Survivin regulates the p53 tumor suppressor gene family. Oncogene. 2004;23:8146–53.

Article  CAS  PubMed  Google Scholar 

Kanwar JR, Kamalapuram SK, Kanwar RK. Survivin signaling in clinical oncology: a multifaceted dragon. Med Res Rev. 2013;33:765–89.

Article  CAS  PubMed  Google Scholar 

Duffy MJ, O’Donovan N, Brennan DJ, Gallagher WM, Ryan BM. Survivin: A promising tumor biomarker. Cancer Lett. 2007;249:49–60.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif