Anti-angiogenesis and anti-immunosuppression gene therapy through targeting COUP-TFII in an in situ glioblastoma mouse model

Tan IL, Wojcinski A, Rallapalli H, Lao Z, Sanghrajka RM, Stephen D, et al. Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proc Natl Acad Sci USA. 2018;115:3392–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun X, Klingbeil O, Lu B, Wu C, Ballon C, Ouyang M, et al. BRD8 maintains glioblastoma by epigenetic reprogramming of the p53 network. Nature. 2023;613:195–202.

Article  CAS  PubMed  Google Scholar 

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

Article  CAS  PubMed  Google Scholar 

Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468:829–U128.

Article  CAS  PubMed  Google Scholar 

McDonald DM, Baluk P. Imaging of angiogenesis in inflamed airways and tumors: newly formed blood vessels are not alike and may be wildly abnormal: Parker B. Francis lecture. Chest. 2005;128:602s–608s.

Article  PubMed  Google Scholar 

Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156:1363–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.

Article  CAS  PubMed  Google Scholar 

Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422.

Article  PubMed  Google Scholar 

Huang MH, Lin YN, Wang CR, Deng LJ, Chen MF, Assaraf YG, et al. New insights into antiangiogenic therapy resistance in cancer: mechanisms and therapeutic aspects. Drug Resist Updat. 2022;64:100849.

Article  CAS  PubMed  Google Scholar 

Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234:8509–21.

Article  CAS  PubMed  Google Scholar 

Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol Mech Dis. 2021;16:223–49.

Article  CAS  Google Scholar 

Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118:9–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res. 2016;22:1865–74.

Article  CAS  PubMed  Google Scholar 

Qin J, Tsai SY, Tsai MJ. The critical roles of COUP-TFII in tumor progression and metastasis. Cell Biosci. 2014;4:58.

Article  PubMed  PubMed Central  Google Scholar 

Xu Z, Yu S, Hsu CH, Eguchi J, Rosen ED. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proc Natl Acad Sci USA. 2008;105:2421–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okamura M, Kudo H, Wakabayashi K, Tanaka T, Nonaka A, Uchida A, et al. COUP-TFII acts downstream of Wnt/β-catenin signal to silence PPARγ gene expression and repress adipogenesis. Proc Natl Acad Sci USA. 2009;106:5819–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie X, Qin J, Lin SH, Tsai SY, Tsai MJ. Nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) modulates mesenchymal cell commitment and differentiation. Proc Natl Acad Sci USA. 2011;108:14843–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 2005;435:98–104.

Article  CAS  PubMed  Google Scholar 

Polvani S, Pepe S, Milani S, Galli A. COUP-TFII in health and disease. Cells. 2020;9:101.

Article  CAS  Google Scholar 

Yun SH, Park JI. COUP-TFII overexpression inhibits cell proliferation and invasion via increased expression of p53 and PTEN and decreased Akt phosphorylation in human colorectal cancer SNU-C4 cells. Anticancer Res. 2020;40:767–77.

Article  CAS  PubMed  Google Scholar 

Ding W, Zhang Y, Cai H, Liu G, Ye Y, Xu G, et al. Overexpression of COUP‑TFII suppresses proliferation and metastasis of human gastric cancer cells. Mol Med Rep. 2018;17:2393–401.

CAS  PubMed  Google Scholar 

Qin J, Wu SP, Creighton CJ, Dai F, Xie X, Cheng CM, et al. COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis. Nature. 2013;493:236–40.

Article  CAS  PubMed  Google Scholar 

Polvani S, Tarocchi M, Tempesti S, Mello T, Ceni E, Buccoliero F, et al. COUP-TFII in pancreatic adenocarcinoma: clinical implication for patient survival and tumor progression. Int J Cancer. 2014;134:1648–58.

Article  CAS  PubMed  Google Scholar 

Bao Y, Gu D, Feng W, Sun X, Wang X, Zhang X, et al. COUP-TFII regulates metastasis of colorectal adenocarcinoma cells by modulating Snail1. Br J Cancer. 2014;111:933–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taniguchi H, Suzuki Y, Imai K, Adachi Y. Antitumoral RNA-targeted oligonucleotide therapeutics: the third pillar after small molecule inhibitors and antibodies. Cancer Sci. 2022;113:2952–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gou M, Men K, Zhang J, Li Y, Song J, Luo S, et al. Efficient inhibition of C-26 colon carcinoma by VSVMP gene delivered by biodegradable cationic nanogel derived from polyethyleneimine. ACS Nano. 2010;4:5573–84.

Article  CAS  PubMed  Google Scholar 

Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23:265–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao J, Ullah I, Gao B, Guo J, Ren XK, Xia S, et al. Agmatine-grafted bioreducible poly(l-lysine) for gene delivery with low cytotoxicity and high efficiency. J Mater Chem B. 2020;8:2418–30.

Article  CAS  PubMed  Google Scholar 

Yang S, Wong KH, Hua P, He C, Yu H, Shao D, et al. ROS-responsive fluorinated polyethyleneimine vector to co-deliver shMTHFD2 and shGPX4 plasmids induces ferroptosis and apoptosis for cancer therapy. Acta Biomater. 2022;140:492–505.

Article  CAS  PubMed  Google Scholar 

Chen W, Wang F, Yu X, Qi J, Dong H, Cui B, et al. LncRNA MIR31HG fosters stemness malignant features of non-small cell lung cancer via H3K4me1- and H3K27Ace-mediated GLI2 expression. Oncogene. 2024;43:1328–1340.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif