Activation of the PERK/eIF2α axis is a pivotal prerequisite of taxanes to cancer cell apoptosis and renders synergism to overcome paclitaxel resistance in breast cancer cells

Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Updates: Reviews Commentaries Antimicrob Anticancer Chemother. 2021;54:100742.

Article  CAS  Google Scholar 

Xiao K, Luo J, Fowler WL, Li Y, Lee JS, Xing L, Cheng RH, Wang L, Lam KS. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials. 2009;30(30):6006–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walsh V, Goodman J. Cancer chemotherapy, biodiversity, public and private property: the case of the anti-cancer drug taxol. Soc Sci Med. 1999;49(9):1215–25.

Article  CAS  PubMed  Google Scholar 

Katsumata N, Tsunematsu R, Tanaka K, Terashima Y, Ogita S, Hoshiai H, Kohno I, Hirabayashi K, Yakushiji M, Noda K, et al. A phase II trial of docetaxel in platinum pre-treated patients with advanced epithelial ovarian cancer: a Japanese cooperative study. Annals Oncology: Official J Eur Soc Med Oncol. 2000;11(12):1531–6.

Article  CAS  Google Scholar 

Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4):253–65.

Article  CAS  PubMed  Google Scholar 

Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene. 2004;23(11):2016–27.

Article  CAS  PubMed  Google Scholar 

Brito DA, Yang Z, Rieder CL. Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J Cell Biol. 2008;182(4):623–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Löwe J, Li H, Downing KH, Nogales E. Refined structure of αβ-tubulin at 3.5 Å resolution11Edited by I. A. Wilson. J Mol Biol. 2001;313(5):1045–57.

Article  PubMed  Google Scholar 

Horwitz SB. Mechanism of action of taxol. Trends Pharmacol Sci. 1992;13(4):134–6.

Article  CAS  PubMed  Google Scholar 

Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010;10(3):194–204.

Article  CAS  PubMed  Google Scholar 

Parker AL, Teo WS, McCarroll JA, Kavallaris M. An emerging role for Tubulin isotypes in modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 2017, 18(7).

Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discovery. 2006;5(3):219–34.

Article  PubMed  Google Scholar 

Němcová-Fürstová V, Kopperová D, Balušíková K, Ehrlichová M, Brynychová V, Václavíková R, Daniel P, Souček P, Kovář J. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol Appl Pharmcol. 2016;310:215–28.

Article  Google Scholar 

Hung CC, Chen CY, Wu YC, Huang CF, Huang YC, Chen YC, Chang CS. Synthesis and biological evaluation of thiophenylbenzofuran derivatives as potential P-glycoprotein inhibitors. Eur J Med Chem. 2020;201:112422.

Article  CAS  PubMed  Google Scholar 

Wang B, Li S, Meng X, Shang H, Guan Y. Inhibition of mdr1 by G-quadruplex oligonucleotides and reversal of paclitaxel resistance in human ovarian cancer cells. Tumour Biology: J Int Soc Oncodevelopmental Biology Med. 2015;36(8):6433–43.

Article  CAS  Google Scholar 

Ning N, Yu Y, Wu M, Zhang R, Zhang T, Zhu C, Huang L, Yun CH, Benes CH, Zhang J, et al. A novel microtubule inhibitor overcomes Multidrug Resistance in Tumors. Cancer Res. 2018;78(20):5949–57.

Article  CAS  PubMed  Google Scholar 

Ojima I, Lichtenthal B, Lee S, Wang C, Wang X. Taxane anticancer agents: a patent perspective. Expert Opin Ther Pat. 2016;26(1):1–20.

Article  CAS  PubMed  Google Scholar 

Ferlini C, Cicchillitti L, Raspaglio G, Bartollino S, Cimitan S, Bertucci C, Mozzetti S, Gallo D, Persico M, Fattorusso C, et al. Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77. Cancer Res. 2009;69(17):6906–14.

Article  CAS  PubMed  Google Scholar 

Zierhut C, Yamaguchi N, Paredes M, Luo JD, Carroll T, Funabiki H. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell. 2019;178(2):302–e315323.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hotamisligil GS, Davis RJ. Cell signaling and stress responses. Cold Spring Harb Perspect Biol 2016, 8(10).

Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21(8):421–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao PC, Tan SK, Lieu CH, Jung HK. Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J Cell Biochem. 2008;104(4):1509–23.

Article  CAS  PubMed  Google Scholar 

Janczar S, Nautiyal J, Xiao Y, Curry E, Sun M, Zanini E, Paige AJ, Gabra H. WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response. Cell Death Dis. 2017;8(7):e2955.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boehmerle W, Splittgerber U, Lazarus MB, McKenzie KM, Johnston DG, Austin DJ, Ehrlich BE. Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proc Natl Acad Sci USA. 2006;103(48):18356–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mhaidat NM, Thorne R, Zhang XD, Hersey P. Involvement of endoplasmic reticulum stress in Docetaxel-induced JNK-dependent apoptosis of human melanoma. Apoptosis: Int J Program cell Death. 2008;13(12):1505–12.

Article  CAS  Google Scholar 

Rong D, Wang C, Zhang X, Wei Y, Zhang M, Liu D, Farhan H, Momen Ali SA, Liu Y, Taouil A, et al. A novel taxane, difluorovinyl-ortataxel, effectively overcomes paclitaxel-resistance in breast cancer cells. Cancer Lett. 2020;491:36–49.

Article  CAS  PubMed  Google Scholar 

Shimizu T, Pommier Y. Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases. Leukemia. 1997;11(8):1238–44.

Article  CAS  PubMed  Google Scholar 

Slee EA, Zhu H, Chow SC, MacFarlane M, Nicholson DW, Cohen GM. Benzyloxycarbonyl-val-ala-asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J. 1996;315(Pt 1):21–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teske BF, Fusakio ME, Zhou D, Shan J, McClintick JN, Kilberg MS, Wek RC. CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis. Mol Biol Cell. 2013;24(15):2477–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6(5):1099–108.

Article  CAS  PubMed  Google Scholar 

Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11(4):381–9.

留言 (0)

沒有登入
gif