Function of serine/arginine-rich splicing factors in hematopoiesis and hematopoietic malignancies

Xiong J, Chen Y, Wang W, Sun J. Biological function and molecular mechanism of SRSF3 in cancer and beyond. Oncol Lett. 2022;23:21. https://doi.org/10.3892/ol.2021.13139.

Article  CAS  PubMed  Google Scholar 

Xiong J, Chen Y, Wang W, Sun J, Biological function and molecular mechanism of SRSF3 in cancer and beyond. (Review) Oncol Lett. 2021;23(1). https://doi.org/10.3892/ol.2021.13139

Busch A, Hertel KJ. Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip Rev RNA. 2012;3:1–12. https://doi.org/10.1002/wrna.100.

Article  CAS  PubMed  Google Scholar 

Qi Z, et al. SRSF1 serves as a critical posttranscriptional regulator at the late stage of thymocyte development. Sci Adv. 2021;7. https://doi.org/10.1126/sciadv.abf0753.

Heazlewood SY, et al. The RNA-binding protein SRSF3 has an essential role in megakaryocyte maturation and platelet production. Blood. 2022;139:1359–73. https://doi.org/10.1182/blood.2021013826.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Younis S, et al. Multiple nuclear-replicating viruses require the stress-induced protein ZC3H11A for efficient growth. Proc Natl Acad Sci U S A. 2018;115:E3808–16. https://doi.org/10.1073/pnas.1722333115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Y, et al. SRSF1 and SRSF9 RNA binding proteins promote wnt signalling-mediated tumorigenesis by enhancing β-catenin biosynthesis. EMBO Mol Med. 2013;5:737–50. https://doi.org/10.1002/emmm.201202218.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latorre E, Harries LW. Splicing regulatory factors, ageing and age-related disease. Ageing Res Rev. 2017;36:165–70. https://doi.org/10.1016/j.arr.2017.04.004.

Article  CAS  PubMed  Google Scholar 

More DA, Kumar A. SRSF3: newly discovered functions and roles in human health and diseases. Eur J Cell Biol. 2020;99:151099. https://doi.org/10.1016/j.ejcb.2020.151099.

Article  CAS  PubMed  Google Scholar 

Zheng X, et al. Serine/arginine-rich splicing factors: the bridge linking alternative splicing and cancer. Int J Biol Sci. 2020;16:2442–53. https://doi.org/10.7150/ijbs.46751.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sciarrillo R, et al. The role of alternative splicing in cancer: from oncogenesis to drug resistance. Drug Resist Updat. 2020;53:100728. https://doi.org/10.1016/j.drup.2020.100728.

Article  PubMed  Google Scholar 

Mehterov N, et al. Alternative RNA splicing-the trojan horse of Cancer cells in Chemotherapy. Genes (Basel). 2021;12. https://doi.org/10.3390/genes12071085.

Fagerberg L, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom. 2014;13:397–406. https://doi.org/10.1074/mcp.M113.035600.

Article  CAS  Google Scholar 

Manley JL, Krainer AR. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev. 2010;24:1073–4. https://doi.org/10.1101/gad.1934910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung CS, et al. Dynamic protein-RNA interactions in mediating splicing catalysis. Nucleic Acids Res. 2019;47:899–910. https://doi.org/10.1093/nar/gky1089.

Article  CAS  PubMed  Google Scholar 

Bringmann P, Lührmann R. Purification of the individual snRNPs U1, U2, U5 and U4/U6 from HeLa cells and characterization of their protein constituents. Embo j. 1986;5:3509–16. https://doi.org/10.1002/j.1460-2075.1986.tb04676.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krainer AR. Pre-mRNA splicing by complementation with purified human U1, U2, U4/U6 and U5 snRNPs. Nucleic Acids Res. 1988;16:9415–29. https://doi.org/10.1093/nar/16.20.9415.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen S, Benbarche S, Abdel-Wahab O. Splicing factor mutations in hematologic malignancies. Blood. 2021;138:599–612. https://doi.org/10.1182/blood.2019004260.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saez B, Walter MJ, Graubert TA. Splicing factor gene mutations in hematologic malignancies. Blood. 2017;129:1260–9. https://doi.org/10.1182/blood-2016-10-692400.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Nostrand EL, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583:711–9. https://doi.org/10.1038/s41586-020-2077-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joris M, et al. Number of inadvertent RNA targets for morpholino knockdown in Danio rerio is largely underestimated: evidence from the study of Ser/Arg-rich splicing factors. Nucleic Acids Res. 2017;45:9547–57. https://doi.org/10.1093/nar/gkx638.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanford JR, et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 2009;19:381–94. https://doi.org/10.1101/gr.082503.108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang H, et al. Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9. Nucleic Acids Res. 2018;46:7323–38. https://doi.org/10.1093/nar/gky348.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jobbins AM, et al. The mechanisms of a mammalian splicing enhancer. Nucleic Acids Res. 2018;46:2145–58. https://doi.org/10.1093/nar/gky056.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho S, et al. Interaction between the RNA binding domains of ser-arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc Natl Acad Sci U S A. 2011;108:8233–8. https://doi.org/10.1073/pnas.1017700108.

Article  PubMed  PubMed Central  Google Scholar 

Leclair NK, et al. Poison exon splicing regulates a Coordinated Network of SR protein expression during differentiation and Tumorigenesis. Mol Cell. 2020;80:648–e665649. https://doi.org/10.1016/j.molcel.2020.10.019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ortiz-Sánchez P, et al. Loss of SRSF3 in Cardiomyocytes Leads to Decapping of Contraction-related mRNAs and severe systolic dysfunction. Circ Res. 2019;125:170–83. https://doi.org/10.1161/circresaha.118.314515.

Article  PubMed  PubMed Central  Google Scholar 

Guo L, et al. TDP43 promotes stemness of breast cancer stem cells through CD44 variant splicing isoforms. Cell Death Dis. 2022;13:428. https://doi.org/10.1038/s41419-022-04867-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz Ú, et al. Hepatocyte growth factor enhances alternative splicing of the Kruppel-like factor 6 (KLF6) tumor suppressor to promote growth through SRSF1. Mol Cancer Res. 2012;10:1216–27. https://doi.org/10.1158/1541-7786.Mcr-12-0213.

Article  PubMed 

留言 (0)

沒有登入
gif