Sex differences in membrane properties and cellular excitability of dopamine D1 receptor-expressing neurons within the shell of the nucleus accumbens of pre- and mid-adolescent mice

Spear LP. Neurobehavioral changes in adolescence. Curr Dir Psychol Sci. 2000;9(4):111–4.

Article  Google Scholar 

Fisher J, Mello MCD, Izutsu T, Vijayakumar L, Belfer M, Omigbodun O. Adolescence: developmental stage and mental health morbidity. Int J Soc Psychiatry. 2011;57(1_suppl):13–9.

Article  Google Scholar 

Figner B, Weber EU. Who takes risks when and why? Determinants of risk taking. Curr Dir Psychol Sci. 2011;20(4):211–6.

Article  Google Scholar 

Duell N, Steinberg L, Icenogle G, Chein J, Chaudhary N, Giunta LD, et al. Age patterns in risk taking across the world. J Youth Adolesc. 2018;47(5):1052–72.

Article  PubMed  Google Scholar 

Balocchini E, Chiamenti G, Lamborghini A. Adolescents: which risks for their life and health? J Prev Med Hyg. 2013;54(4):191–4.

PubMed  PubMed Central  CAS  Google Scholar 

Liu X, Hairston J, Schrier M, Fan J. Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev. 2011;35(5):1219–36.

Article  PubMed  Google Scholar 

Stuber GD, Sparta DR, Stamatakis AM, Leeuwen WAV, Hardjoprajitno JE, Cho S, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature. 2011;475(7356):377–82.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol. 2015;130:29–70.

Article  PubMed  PubMed Central  Google Scholar 

Salgado S, Kaplitt MG. The nucleus accumbens: a comprehensive review. Stereotact Funct Neurosurg. 2015;93(2):75–93.

Article  PubMed  Google Scholar 

Georgescu IA, Popa D, Zagrean L. The anatomical and functional heterogeneity of the mediodorsal thalamus. Brain Sci. 2020;10(9):1–17.

Article  Google Scholar 

Planert H, Berger TK, Silberberg G. Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0057054.

Article  PubMed  PubMed Central  Google Scholar 

Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. 2013;9:449–61.

PubMed  PubMed Central  Google Scholar 

Money KM, Stanwood GD. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci. 2013. https://doi.org/10.3389/fncel.2013.00260.

Article  PubMed  PubMed Central  Google Scholar 

Teicher MH, Andersen SL, Hostetter JC. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev Brain Res. 1995;89(2):167–72.

Article  CAS  Google Scholar 

Andersen SL, Dumont NL, Teicher MH. Developmental differences in dopamine synthesis inhibition by (+/-)-7-OH-DPAT. Naunyn Schmiedebergs Arch Pharmacol. 1997;356(2):173–81.

Article  PubMed  CAS  Google Scholar 

Tarazi FI, Tomasini EC, Baldessarini RJ. Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: an autoradiographic study. Dev Neurosci. 1999;21(1):43–9.

Article  PubMed  CAS  Google Scholar 

Naneix F, Marchand AR, Scala GD, Pape JR, Coutureau E. Parallel maturation of goal-directed behavior and dopaminergic systems during adolescence. J Neurosci. 2012;32(46):16223–32.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cullity ER, Madsen HB, Perry CJ, Kim JH. Postnatal developmental trajectory of dopamine receptor 1 and 2 expression in cortical and striatal brain regions. J Comp Neurol. 2019;527(6):1039–55.

Article  PubMed  CAS  Google Scholar 

Pokinko M, Grant A, Shahabi F, Dumont Y, Manitt C, Flores C. Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan. Neuroscience. 2017;346:182–9.

Article  PubMed  CAS  Google Scholar 

Kopec AM, Smith CJ, Ayre NR, Sweat SC, Bilbo SD. Microglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-06118-z.

Article  PubMed  PubMed Central  Google Scholar 

Kasanetz F, Manzoni OJ. Maturation of excitatory synaptic transmission of the rat nucleus accumbens from juvenile to adult. J Neurophysiol. 2009;101(5):2516–27.

Article  PubMed  CAS  Google Scholar 

Willett JA, Will T, Hauser CA, Dorris DM, Cao J, Meitzen J. No evidence for sex differences in the electrophysiological properties and excitatory synaptic input onto nucleus accumbens shell medium spiny neurons. eNeuro. 2016;3(1):173–83.

Article  Google Scholar 

Cao J, Dorris DM, Meitzen J. Electrophysiological properties of medium spiny neurons in the nucleus accumbens core of prepubertal male and female Drd1a-tdTomato line 6 BAC transgenic mice. J Neurophysiol. 2018;120(4):1712–27.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Proaño SB, Morris HJ, Kunz LM, Dorris DM, Meitzen J. Estrous cycle-induced sex differences in medium spiny neuron excitatory synaptic transmission and intrinsic excitability in adult rat nucleus accumbens core. J Neurophysiol. 2018;120(3):1356–73.

Article  PubMed  PubMed Central  Google Scholar 

Ade KK, Wan Y, Chen M, Gloss B, Calakos N. An improved BAC transgenic fluorescent reporter line for sensitive and specific identification of striatonigral medium spiny neurons. Front Syst Neurosci. 2011. https://doi.org/10.3389/fnsys.2011.00032.

Article  PubMed  PubMed Central  Google Scholar 

Adriani W, Granstrem O, Macri S, Izykenova G, Dambinova S, Laviola G. Behavioral and neurochemical vulnerability during adolescence in mice: studies with nicotine. Neuropsychopharmacology. 2004;29(5):869–78.

Article  PubMed  CAS  Google Scholar 

Marty VN, Spigelman I. Long-lasting alterations in membrane properties, k(+) currents, and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence. Front Neurosci. 2012. https://doi.org/10.3389/fnins.2012.00086.

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Ishikawa M, Yang Y, Otaka M, Kim JY, Gardner GR, et al. Cascades of homeostatic dysregulation promote incubation of cocaine craving. J Neurosci. 2018;38(18):4316–28.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gradwell MA, Boyle KA, Callister RJ, Hughes DI, Graham BA. Heteromeric α/β glycine receptors regulate excitability in parvalbumin-expressing dorsal horn neurons through phasic and tonic glycinergic inhibition. J Physiol. 2017;595(23):7185–202.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zheng F, Johnson SW. Glycine receptor-mediated inhibition of dopamine and non-dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 2001;919(2):313–7.

Article  PubMed  CAS  Google Scholar 

Mermelstein PG, Song WJ, Tkatch T, Yan Z, Surmeier DJ. Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J Neurosci. 1998;18(17):6650–61.

Article  PubMed  PubMed Central  CAS  Google Scholar 

留言 (0)

沒有登入
gif