Application and insights of targeted next-generation sequencing in a large cohort of 46,XY disorders of sex development in Chinese

Hughes IA, Houk C, Ahmed SF, Lee PA, Group LC, Group EC. Consensus statement on management of intersex disorders. Arch Dis Child. 2006;91:7554–63. https://doi.org/10.1136/adc.2006.098319.

Article  Google Scholar 

Nordenvall AS, Frisen L, Nordenstrom A, Lichtenstein P, Nordenskjold A. Population based nationwide study of hypospadias in Sweden, 1973 to 2009: incidence and risk factors. J Urol. 2014;191:3:783–9. https://doi.org/10.1016/j.juro.2013.09.058.

Article  PubMed  Google Scholar 

Wisniewski AB, Batista RL, Costa EMF, Finlayson C, Sircili MHP, Denes FT, et al. Management of 46,XY Differences/Disorders of Sex Development (DSD) throughout life. Endocr Rev. 2019;40:6:1547–72. https://doi.org/10.1210/er.2019-00049.

Article  PubMed  Google Scholar 

Lampalzer U, Briken P, Schweizer K. Psychosocial care and support in the field of intersex/diverse sex development (dsd): counselling experiences, localisation and needed improvements. Int J Impot Res. 2021;33:2228–42. https://doi.org/10.1038/s41443-021-00422-x.

Article  Google Scholar 

Lu L, Luo F, Wang X. Gonadal tumor risk in pediatric and adolescent phenotypic females with disorders of sex development and Y chromosomal constitution with different genetic etiologies. Front Pediatr. 2022;10:856128. https://doi.org/10.3389/fped.2022.856128.

Article  PubMed  PubMed Central  Google Scholar 

Mendonca BB, Domenice S, Arnhold IJ, Costa EM. 46,XY disorders of sex development (DSD). Clin Endocrinol (Oxf). 2009;70. https://doi.org/10.1111/j.1365-2265.2008.03392.x. :2:173 – 87.

Rey RA, Grinspon RP. Normal male sexual differentiation and aetiology of disorders of sex development. Best Pract Res Clin Endocrinol Metab. 2011;25:2221–38. https://doi.org/10.1016/j.beem.2010.08.013.

Article  CAS  Google Scholar 

Ono M, Harley VR. Disorders of sex development: new genes, new concepts. Nat Rev Endocrinol. 2013;9:2:79–91. https://doi.org/10.1038/nrendo.2012.235.

Article  PubMed  CAS  Google Scholar 

Delot EC, Vilain E. Towards improved genetic diagnosis of human differences of sex development. Nat Rev Genet. 2021;22:9:588–602. https://doi.org/10.1038/s41576-021-00365-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ahmed SF, Bashamboo A, Lucas-Herald A, McElreavey K. Understanding the genetic aetiology in patients with XY DSD. Br Med Bull. 2013;106:67–89. https://doi.org/10.1093/bmb/ldt008.

Article  PubMed  CAS  Google Scholar 

Luo X, Wang R, Sun Y, Qiu W, Lu D, Wang Y, et al. Deep intronic PAH variants explain missing heritability in Hyperphenylalaninemia. J Mol Diagn. 2023;25:5. https://doi.org/10.1016/j.jmoldx.2023.02.001.

Article  CAS  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i17884–90. https://doi.org/10.1093/bioinformatics/bty560.

Article  CAS  Google Scholar 

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:14:1754–60. https://doi.org/10.1093/bioinformatics/btp324.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:16. https://doi.org/10.1093/bioinformatics/btp352.

Article  CAS  Google Scholar 

Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinf. 2013;43:11. https://doi.org/10.1002/0471250953.bi1110s43.

Article  Google Scholar 

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:16e164. https://doi.org/10.1093/nar/gkq603.

Article  CAS  Google Scholar 

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:5405–24. https://doi.org/10.1038/gim.2015.30.

Article  Google Scholar 

Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:11. https://doi.org/10.1093/bioinformatics/bty897.

Article  CAS  Google Scholar 

Wang H, Zhang L, Wang N, Zhu H, Han B, Sun F, et al. Next-generation sequencing reveals genetic landscape in 46, XY disorders of sexual development patients with variable phenotypes. Hum Genet. 2018;137:3265–77. https://doi.org/10.1007/s00439-018-1879-y.

Article  CAS  Google Scholar 

Yu BQ, Liu ZX, Gao YJ, Wang X, Mao JF, Nie M, et al. Prevalence of gene mutations in a Chinese 46,XY disorders of sex development cohort detected by targeted next-generation sequencing. Asian J Androl. 2021;23(1):69–73. https://doi.org/10.4103/aja.aja_36_20.

Article  PubMed  Google Scholar 

Zhang B, Song Y, Li W, Gong C. Variant analysis of the chromodomain helicase DNA-binding protein 7 in pediatric disorders of sex development. Pediatr Investig. 2019;3:131–8. https://doi.org/10.1002/ped4.12111.

Article  Google Scholar 

Alimussina M, Diver LA, McGowan R, Ahmed SF. Genetic testing of XY newborns with a suspected disorder of sex development. Curr Opin Pediatr. 2018;30:4. https://doi.org/10.1097/MOP.0000000000000644.

Article  CAS  Google Scholar 

Yatsenko SA, Witchel SF. Genetic approach to ambiguous genitalia and disorders of sex development: what clinicians need to know. Semin Perinatol. 2017;41:4. https://doi.org/10.1053/j.semperi.2017.03.016.

Article  Google Scholar 

Pleskacova J, Hersmus R, Oosterhuis JW, Setyawati BA, Faradz SM, Cools M, et al. Tumor risk in disorders of sex development. Sex Dev. 2010;4:4–5. https://doi.org/10.1159/000314536.

Article  Google Scholar 

Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12:10. https://doi.org/10.1038/nrg3051.

Article  CAS  Google Scholar 

Batista RL, Mendonca BB. Integrative and Analytical Review of the 5-Alpha-reductase type 2 Deficiency Worldwide. Appl Clin Genet. 2020;13:83–96. https://doi.org/10.2147/TACG.S198178.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Han B, Cheng T, Zhu H, Yu J, Zhu WJ, Song HD, et al. Genetic analysis of 25 patients with 5alpha-Reductase Deficiency in Chinese Population. Biomed Res Int. 2020;2020:1789514. https://doi.org/10.1155/2020/1789514.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gui B, Song Y, Su Z, Luo FH, Chen L, Wang X, et al. New insights into 5alpha-reductase type 2 deficiency based on a multi-centre study: regional distribution and genotype-phenotype profiling of SRD5A2 in 190 Chinese patients. J Med Genet. 2019;56:10685–92. https://doi.org/10.1136/jmedgenet-2018-105915.

Article  CAS  Google Scholar 

Palui R, Ravichandran L, Kamalanathan S, Chapla A, Sahoo J, Narayanan N, et al. Clinical, hormonal, and genetic spectrum of 46 XY disorders of sexual development (DSD) patients. Indian J Pediatr. 2024. https://doi.org/10.1007/s12098-024-05144-8.

Article  PubMed  Google Scholar 

Akcan N, Uyguner O, Bas F, Altunoglu U, Toksoy G, Karaman B, et al. Mutations in AR or SRD5A2 genes: clinical findings, endocrine pitfalls, and genetic features of children with 46,XY DSD. J Clin Res Pediatr Endocrinol. 2022;14:2153–71. https://doi.org/10.4274/jcrpe.galenos.2022.2021-9-19.

Article  Google Scholar 

Hughes IA. Consequences of the Chicago DSD Consensus: a personal perspective. Horm Metab Res. 2015;47:5:394–400. https://doi.org/10.1055/s-0035-1545274.

Article  PubMed  CAS  Google Scholar 

Mendonca BB, Inacio M, Costa EM, Arnhold IJ, Silva FA, Nicolau W, et al. Male pseudohermaphroditism due to steroid 5alpha-reductase 2 deficiency. Diagnosis, psychological evaluation, and management. Med (Baltim). 1996;75:2:64–76. https://doi.org/10.1097/00005792-199603000-00003.

Article  CAS 

留言 (0)

沒有登入
gif