Gut-derived immune cells and the gut-lung axis in ARDS

Ardain A, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 2019;570(7762):528–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otani S, Coopersmith CM. Gut integrity in critical illness. J Intensive Care. 2019;7:17.

Article  PubMed  PubMed Central  Google Scholar 

Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci. 2010;1207(Suppl 1):E103–11.

PubMed  Google Scholar 

Moore EE, Claude H. Organ, Jr. memorial lecture: Splanchnic hypoperfusion provokes acute lung injury via a 5-lipoxygenase-dependent mechanism. Am J Surg. 2010;200(6):681–9.

Article  PubMed  PubMed Central  Google Scholar 

Ma Y, et al. The gut-lung axis in systemic inflammation. Role of mesenteric lymph as a conduit. Am J Respir Cell Mol Biol. 2021;64(1):19–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauche D, et al. IL-23 and IL-2 activation of STAT5 is required for optimal IL-22 production in ILC3s during colitis. Sci Immunol. 2020;5(46):66.

Article  Google Scholar 

Ma PJ, Wang MM, Wang Y. Gut microbiota: a new insight into lung diseases. Biomed Pharmacother. 2022;155: 113810.

Article  CAS  PubMed  Google Scholar 

Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.

Article  CAS  PubMed  Google Scholar 

Atarashi K, Honda K. Microbiota in autoimmunity and tolerance. Curr Opin Immunol. 2011;23(6):761–8.

Article  CAS  PubMed  Google Scholar 

Chervonsky AV. Intestinal commensals: influence on immune system and tolerance to pathogens. Curr Opin Immunol. 2012;24(3):255–60.

Article  CAS  PubMed  Google Scholar 

Paun A, Danska JS. Immuno-ecology: how the microbiome regulates tolerance and autoimmunity. Curr Opin Immunol. 2015;37:34–9.

Article  CAS  PubMed  Google Scholar 

Chhor V, et al. Role of microglia in a mouse model of paediatric traumatic brain injury. Brain Behav Immun. 2017;63:197–209.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao M, et al. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: a review. Biomed Pharmacother. 2023;164: 114985.

Article  CAS  PubMed  Google Scholar 

Thomas R, Qiao S, Yang X. Th17/Treg imbalance: Implications in lung inflammatory diseases. Int J Mol Sci. 2023;24(5):66.

Article  Google Scholar 

Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care. 2024;28(1):71.

Article  PubMed  PubMed Central  Google Scholar 

Jiang Q, et al. Immunosuppression and neuroinflammation in stroke pathobiology. Exp Neurobiol. 2021;30(2):101–12.

Article  PubMed  PubMed Central  Google Scholar 

Huffnagle GB, Dickson RP. The bacterial microbiota in inflammatory lung diseases. Clin Immunol. 2015;159(2):177–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dickson RP, et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc. 2015;12(6):821–30.

Article  PubMed  PubMed Central  Google Scholar 

O’Dwyer DN, et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(9):1127–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathieu E, et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front Physiol. 2018;9:1168.

Article  PubMed  PubMed Central  Google Scholar 

Yang D, et al. Dysregulated lung commensal bacteria drive Interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity. 2019;50(3):692e7-706e7.

Article  Google Scholar 

Coburn B, et al. Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep. 2015;5:10241.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin C, et al. Commensal microbiota promote lung cancer development via gammadelta T cells. Cell. 2019;176(5):998e16-1013e16.

Article  Google Scholar 

Dickson RP, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1(10):16113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dickson RP, et al. The microbiome and the respiratory tract. Annu Rev Physiol. 2016;78:481–504.

Article  CAS  PubMed  Google Scholar 

Yang D, et al. The impact of lung microbiota dysbiosis on inflammation. Immunology. 2020;159(2):156–66.

Article  CAS  PubMed  Google Scholar 

Sommer F, Backhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38.

Article  CAS  PubMed  Google Scholar 

Haak BW, Levi M, Wiersinga WJ. Microbiota-targeted therapies on the intensive care unit. Curr Opin Crit Care. 2017;23(2):167–74.

Article  PubMed  Google Scholar 

Ziaka M, Exadaktylos A. Exploring the lung-gut direction of the gut-lung axis in patients with ARDS. Crit Care. 2024;28(1):179.

Article  PubMed  PubMed Central  Google Scholar 

Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90–105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alverdy JC, Krezalek MA. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis. Crit Care Med. 2017;45(2):337–47.

Article  PubMed  PubMed Central  Google Scholar 

Lathrop SK, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478(7368):250–4.

Article 

留言 (0)

沒有登入
gif