Structural, Morphological, Optical and Magnetic Investigations of Mn-Doped BaTiO3 Nanostructures for Spintronic Applications

Z.H. Stachurski, G. Wang, and X. Tan, Magnetic properties of amorphous metallic alloys, An Introduction to Metallic Glasses and Amorphous Metals. ed. by Z.H. Stachurski, G. Wang (Elsevier, 2021), pp. 157–192.

B. Sai Ram, A.K. Paul, and S.V. Kulkarni, Soft magnetic materials and their applications in transformers. J. Magn. Magn. Mater.Magn. Magn. Mater. 537, 168210 (2021).

CAS  Google Scholar 

F. Ibraheem, H. El-Bahnasawy, I.A. Mahdy, M.A. Mahdy, E.A. Mahmoud, J. Enrique Ortega, M. Corso, C. Rogero, and A. El-Sayed, Soft ferromagnetic effect in FePc/CdS hybrid diluted magnetic organic/inorganic quantum dots. J. Alloys Compd. 968, 171988 (2023).

CAS  Google Scholar 

S.U. Awan, Z. Mehmood, S. Hussain, S.A. Shah, N. Ahmad, M. Rafique, M. Aftab, and T.A. Abbas, Correlation between structural, electrical, dielectric and magnetic properties of semiconducting Co doped and (Co, Li) co-doped ZnO nanoparticles for spintronics applications. Phys. E Low Dimens. Syst. Nanostruct. 103, 110–121 (2018).

CAS  Google Scholar 

H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

CAS  PubMed  Google Scholar 

P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Osorio Guillen, B. Johansson, and G.A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673–677 (2003).

CAS  PubMed  Google Scholar 

T. Dietl, Ferromagnetic semiconductors. Semicond. Sci. Technol.. Sci. Technol. 17, 377–392 (2002).

CAS  Google Scholar 

S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

CAS  PubMed  Google Scholar 

W. Feng, Fu. Xiao, C. Wan, Z. Yuan, X. Han, N. Van Quang, and S. Cho, Spin gapless semiconductor like Ti2MnAl film as a new candidate for spintronics application. Phys. Status Solidi Rapid Res. Lett. 9, 641–645 (2015).

CAS  Google Scholar 

N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, and Ph. Ghosez, Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat. Commun.Commun. 6, 1–6 (2015).

Google Scholar 

D.D. Dung, Defect induced magnetism in oxide semiconductors, 21 - Magnetism in Titanates, ed. by D.D. Dung (Woodhead Publishing Series in Electronic and Optical Materials, 2023) pp. 481–527.

E. Padmini and K. Ramachandran, Investigation on versatile behaviour of Cd doped SrTiO3 perovskite structured compounds. Solid State Commun.Commun. 302, 113716 (2019).

CAS  Google Scholar 

M. Muralidharan, V. Anbarasu, A. ElayaPerumal, and K. Sivakumar, Carrier mediated ferromagnetism in Cr doped SrTiO3 compounds. J. Mater. Sci. Mater. Electron. 26, 6352–6365 (2015).

CAS  Google Scholar 

M.A. Ahmed and S.T. Bishay, Effect of annealing time, weight pressure and Fe doping on the electrical and magnetic behavior of calcium titanate. Mater. Chem. Phys. 114, 446–450 (2009).

CAS  Google Scholar 

R. Tursun, Y.C. Su, Q.S. Yu, J. Tan, T. Hu, Z.B. Luo, and J. Zhang, Effect of doping on the structural, magnetic, and ferroelectric properties of Ni1–xAxTiO3 (A = Mn, Fe Co, Cu, Zn; x = 0, 0.05, and 0.1). J. Alloys Compd. 773, 288–298 (2019).

CAS  Google Scholar 

H.T. Langhammer, T. Müller, T. Walther, R. Böttcher, D. Hesse, E. Pippel, and S.G. Ebbinghaus, Ferromagnetic properties of barium titanate ceramics doped with cobalt, iron, and nickel. J. Mater. Sci. 51, 10429–10441 (2016).

CAS  Google Scholar 

V. Sherlin Vinita, S. Sahaya Jude Dhas, S. Suresh, S.C. Jeyakumar, S. Srinivasan, and C.S. Biju, Tailoring the magnetic properties of non-magnetic Cd doped BaTiO3 nanostructures. J. Magn. Magn. Mater.Magn. Magn. Mater. 565, 170251 (2023).

CAS  Google Scholar 

H. Nakayama and H.K. Yoshida, Theoretical prediction of magnetic properties of Ba(Ti1−xMx)O3 (M=Sc, V, Cr, Mn, Fe Co, Ni, Cu). Jpn. J. Appl. Phys.. J. Appl. Phys. 40, 1355–1358 (2001).

Google Scholar 

Y.H. Lin, S. Zhang, C. Deng, Y. Zhang, X. Wang, and C.W. Nan, Comment on “mechanism of flexural resonance frequency shift of a piezoelectric microcantilever sensor during humidity detection.” Appl. Phys. Lett. 92, 112501–112503 (2008).

Google Scholar 

Y.-H. Lin, J. Yuan, S. Zhang, Yi. Zhang, J. Liu, Y. Wang, and C.-W. Nan, Multiferroic behavior observed in highly orientated Mn-doped BaTiO3 thin films. Appl. Phys. Lett. 95, 033105 (2009).

Google Scholar 

A. Rani, J. Kolte, and P. Gopalan, Phase formation, microstructure, electrical and magnetic properties of Mn substituted barium titanate. Ceram. Int. 41, 14057–14063 (2015).

CAS  Google Scholar 

T.-L. Phan, P. Zhang, D. Grinting, S.C. Yu, N.X. Nghia, N.V. Dang, and V.D. Lam, Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO3 ceramics. J. Appl. Phys. 112, 013909 (2012).

Google Scholar 

Y. Shuai, S. Zhou, D. Bürger, H. Reuther, I. Skorupa, V. John, M. Helm, and H. Schmidt, Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. J. Appl. Phys.Phys.. 109, 084105 (2011).

Google Scholar 

X. Tong, Y.-H. Lin, S. Zhang, Y. Wang, and C.-W. Nan, Preparation of Mn-doped BaTiO3 nanoparticles and their magnetic properties. J. Appl. Phys.Phys.. 104, 066108 (2008).

Google Scholar 

K. Madhan, R. Thiyagarajan, C. Jagadeeshwaran, A. Paul BlessingtonSelvadurai, V. Pazhanivelu, K. Aravinth, W. Yang, and R. Murugaraj, Investigations on the phase transition of Mn-doped BaTiO3 multifunctional ferroelectric ceramics through Raman, dielectric, and magnetic studies. JSST 88, 584–592 (2018).

CAS  Google Scholar 

I.C. Amaechi, G. Kolhatkar, A. Hadj Youssef, D. Rawach, S. Sun, and A. Ruediger, B-site modified photoferroic Cr3+-doped barium titanate nanoparticles: microwave-assisted hydrothermal synthesis, photocatalytic and electrochemical properties. RSC Adv. 9, 20806–20817 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

M.C. Maldonado-Orozco, M.T. Ochoa-Lara, J.E. Sosa-Márquez, R.P. Talamantes-Soto, A. Hurtado-Macías, R. LópezAntón, and F. Espinosa-Magaña, Absence of ferromagnetism in ferroelectric Mn-doped BaTiO3nanofibers. JACerS 102, 2800–2809 (2019).

CAS  Google Scholar 

S. Layek and H.C. Verma, Room temperature ferromagnetism in Mn-doped NiO nanoparticles. J. Magn. Magn. Mater.Magn. Magn. Mater. 397, 73–78 (2016).

CAS  Google Scholar 

M.A. Gomes, Á.S. Lima, K.I.B. Eguiluz, and G.R. Salazar-Banda, Wet chemical synthesis of rare earth-doped barium titanate nanoparticles. J. Mater. Sci. 51, 4709–4727 (2016).

CAS  Google Scholar 

Y. Zhou, X. Zhu, and S. Li, Effect of particle size on electric and magnetic transport properties of La0.67Sr0.33MnO3 coatings. Phys. Chem. Chem. Phys. 17, 31161–31169 (2015).

CAS  PubMed  Google Scholar 

M. Nageri and V. Kumar, Manganese-doped BaTiO3 nanotube arrays for enhanced visible light photocatalytic applications. Mater. Chem. Phys. 213, 400–405 (2018).

CAS  Google Scholar 

J. Gu, W. Tian, Z. Wang, N. Ma, and P. Du, Control of oxygen vacancies in TiO6 octahedra of amorphous BaTiO3 thin films with tunable built-in electric field in a -BaTiO3/p-Si heterojunction for metal–oxide–semiconductor applications. Phys. Status Solidi A 217, 1900941 (2020).

CAS  Google Scholar 

V. Sherlin Vinita, D. Ravikumar, D. Lakshmanan, S. Sahaya Jude Dhas, S. Rajan, and C.S. Biju, Role of Sn doping on the structural, morphological, optical and magnetic properties of BaTiO3 nanostructures. J. Mater. Sci. Mater. Electron. 34, 1539 (2023).

Google Scholar 

X. Zhang, C. Pei, X. Chang, S. Chen, R. Liu, Z.-J. Zhao, Mu. Rentao, and J. Gong, FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2- splitting. J. Am. Chem. Soc. 142, 11540–11549 (2020).

CAS  PubMed  Google Scholar 

R. Das, S. Sharma, and K. Mandal, Aliovalent Ba2+ doping: a way to reduce oxygen vacancy in multiferroic BiFeO3. J. Magn. Magn. Mater.Magn. Magn. Mater. 401, 129–137 (2015).

Google Scholar 

P. Kar, S. Sardar, S. Ghosh, M.R. Parida, B. Liu, O.F. Mohammed, and S.K. Pal, Nano surface engineering of Mn2O3 for potential light-harvesting application. J. Mater. Chem. C 3, 8200–8211 (2015).

CAS  Google Scholar 

S.K. Das and B.K. Roul, Role of Mn doping for obtaining of hexagonal phase in Ba0.98Zn0.02TiO3 ceramics. J. Phys. Chem. Solids 95, 1–5 (2016).

CAS  Google Scholar 

Y. Fan, Yu. Shuhui, R. Sun, L. Li, Y. Yin, K.-W. Wong, and Du. Ruxu, Microstructure and electrical properties of Mn-doped barium strontium titanate thin films prepared on copper foils. Appl. Surf. Sci. 256, 6531–6535 (2010).

CAS  Google Scholar 

V. Sherlin Vinita, R. Gowri Shankar Rao, J. Samuel, S. Shabna, N. Joslin Ananth, P.M. ShajinShinu, S. Suresh, Y. Samson, and C.S. Biju, Structural, Raman and optical investigations of barium titanate nanoparticles. Phosphorus Sulfur Silicon Relat. Elem.Sulfur Silicon Relat. Elem. 197, 169–175 (2022).

CAS  Google Scholar 

Y. Qi, L. Zhang, G. Jin, Y. Wan, Y. Tang, D. Xu, Q. He, F. Wang, Y. Li, and D. Sun, UV–visible spectra and conductive property of Mn-doped BaTiO3 and Ba0.93Sr0.07TiO3 ceramics. Ferroelectrics 458, 64–69 (2014).

CAS  Google Scholar 

K. Madhan, C. Jagadeeshwaran, and R. Murugaraj, Enhancement of electrical and magnetic properties in acceptor-doped BaTiO3 ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 30, 2953–2965 (2019).

CAS  Google Scholar 

M.K. Rath, Characterization and photoluminescence studies on hydrothermally synthesized Mn-doped barium titanate nano powders. Mater. Lett. 61, 4821–4823 (2007).

Google Scholar 

N. Sharma, A. Gaur, and U. Kr, Multiferroic behavior of nanocrystalline BaTiO3 sintered at different temperatures. Ceram. Int. 40, 16441–16448 (2014).

CAS  Google Scholar 

V. Kaushik, V. Kumar, D. Kumar, R. Kumar, V. Singh, M. Kumar, and S.K. Sharma, Effect of aging on microstructural and optical properties of sol-gel dip coated BaTiO3 thin films. Appl. Surf. Sci. Adv. 16, 100418 (2023).

Google Scholar 

D. Krishna Bhat, H. Bantawal, and U. Sandhya Shenoy, Rhodium doping augments photocatalytic activity of barium titanate: effect of electronic structure engineering. Nanoscale Adv. 2, 5688–5698 (2020).

PubMed  PubMed Central  Google Scholar 

M. Rastogi, H.S. Kushwaha, and R. Vaish, Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets. Electron. Mater. Lett. 12, 281–289 (2016).

CAS  Google Scholar 

A.E. Souza, R.A. Silva, G.T.A. Santos, M.L. Moreira, D.P. Volanti, S.R. Teixeira, and E. Longo, Photoluminescence of bariu

留言 (0)

沒有登入
gif