Long-Term Durability Prediction of Slag–Fly Ash-Blended Engineered Cementitious Composite Subjected to Chloride and Sulfate Salt

Arns A, Dangendorf S, Jensen J, Talke S, Bender J, Pattiaratchi C (2017) Sea-level rise induced amplification of coastal protection design heights. Sci Rep 7:40171. https://doi.org/10.1038/srep40171

Article  Google Scholar 

Arya C, Vassie P, Bioubakhsh S (2014) Modelling chloride penetration in concrete subjected to cyclic wetting and drying. Mag Concr Res 66:364–376. https://doi.org/10.1680/macr.13.00255

Article  Google Scholar 

Bao J, Wei J, Zhang P, Zhuang Z, Zhao T (2022) Experimental and theoretical investigation of chloride ingress into concrete exposed to real marine environment. Cem Concr Compos 130:104511. https://doi.org/10.1016/j.cemconcomp.2022.104511

Article  Google Scholar 

Booya E, Gorospe K, Das S, Loh P (2020) The influence of utilizing slag in lieu of fly ash on the performance of engineered cementitious composites. Constr Build Mater 256:119412. https://doi.org/10.1016/j.conbuildmat.2020.119412

Article  Google Scholar 

Chen W, Huang B, Yuan Y, Deng M (2020) Deterioration process of concrete exposed to internal sulfate attack. Materials 13:1336. https://doi.org/10.3390/ma13061336

Article  Google Scholar 

Diab AM, Elyamany HE, Abd Elmoaty AEM, Shalan AH (2014) Prediction of concrete compressive strength due to long term sulfate attack using neural network. Alex Eng J 53:627–642. https://doi.org/10.1016/j.aej.2014.04.002

Article  Google Scholar 

Girardi F, Vaona W, Di Maggio R (2010) Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack. Cem Concr Compos 32:595–602. https://doi.org/10.1016/j.cemconcomp.2010.07.002

Article  Google Scholar 

Harilal M, Anandkumar B, George RP, Albert SK, Philip J (2023) High-performance eco-friendly ternary blended green concrete in seawater environment. Hybrid Adv 3:100037. https://doi.org/10.1016/j.hybadv.2023.100037

Article  Google Scholar 

Hua T, Hu X, Tang J, Wang Y, Li H, Liu J (2022) Influence of CaO-based expansive agent on chloride penetration resistance of marine concrete. Constr Build Mater 326:126872. https://doi.org/10.1016/j.conbuildmat.2022.126872

Article  Google Scholar 

Jayanti DS, Mirza J, Jaya RP, Bakar BHA, Hassan NA, Hainin MR (2016) Chloride penetration of RHA concrete under marine environment. Proc Inst Civ Eng- Marit Eng 169:76–85. https://doi.org/10.1680/jmaen.2015.8

Article  Google Scholar 

Kassir MK, Ghosn M (2002) Chloride-induced corrosion of reinforced concrete bridge decks. Cem Concr Res 32:139–143. https://doi.org/10.1016/S0008-8846(01)00644-5

Article  Google Scholar 

Li M, Li VC (2011) Cracking and healing of engineered cementitious composites under chloride environment. ACI Mater J 108(3):333. https://doi.org/10.14359/51682499

Article  Google Scholar 

Li Q, Li K, Zhou X, Zhang Q, Fan Z (2015) Model-based durability design of concrete structures in Hong Kong–Zhuhai–Macau sea link project. Struct Saf 53:1–12. https://doi.org/10.1016/j.strusafe.2014.11.002

Article  Google Scholar 

Li W, Shumuye ED, Shiying T, Wang Z, Zerfu K (2022) Eco-friendly fibre reinforced geopolymer concrete: a critical review on the microstructure and long-term durability properties. Case Stud Constr Mater 16:e00894. https://doi.org/10.1016/j.cscm.2022.e00894

Article  Google Scholar 

Lu C, Gao Y, Cui Z, Liu R (2015) Experimental analysis of chloride penetration into concrete subjected to drying-wetting cycles. J Mater Civ Eng 27:04015036. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001304

Article  Google Scholar 

Marques PF, Costa A, Lanata F (2012) Service life of RC structures: chloride induced corrosion: prescriptive versus performance-based methodologies. Mater Struct 45:277–296. https://doi.org/10.1617/s11527-011-9765-2

Article  Google Scholar 

Ministry of construction of the People’s Republic of China, standard for test method of mechanical, Properties on Ordinary Concrete (GB/T 50081-2002) (2003)

Oppenheimer M, Glavovic BC, Hinkel J, van de Wal R, Magnan AK, Abd-Elgawad A, Cai R, Cifuentes-Jara M, Rica C, DeConto RM, et al. (2019) Sea level rise and implications for low-lying Islands, coasts and communities. 126

Özbay E, Karahan O, Lachemi M, Hossain KMA, Atis CD (2013) Dual effectiveness of freezing-thawing and sulfate attack on high-volume slag-incorporated ECC. Compos Part B Eng 45:1384–1390. https://doi.org/10.1016/j.compositesb.2012.07.038

Article  Google Scholar 

Pack S-W, Jung M-S, Song H-W, Kim S-H, Ann KY (2010) Prediction of time dependent chloride transport in concrete structures exposed to a marine environment. Cem Concr Res 40:302–312. https://doi.org/10.1016/j.cemconres.2009.09.023

Article  Google Scholar 

Parron-Rubio ME, Perez-Garcia F, Gonzalez-Herrera A, Oliveira MJ, Rubio-Cintas MD (2019) Slag substitution as a cementing material in concrete: mechanical, physical and environmental properties. Materials 12:2845. https://doi.org/10.3390/ma12182845

Article  Google Scholar 

Petcherdchoo A (2013) Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete. Constr Build Mater 38:497–507. https://doi.org/10.1016/j.conbuildmat.2012.08.041

Article  Google Scholar 

Shekarchi M, Rafiee A, Layssi H (2009) Long-term chloride diffusion in silica fume concrete in harsh marine climates. Cem Concr Compos 31:769–775. https://doi.org/10.1016/j.cemconcomp.2009.08.005

Article  Google Scholar 

Shumuye ED, Li W, Liu J, Wang Z, Yu J, Wu H (2022a) Self-healing recovery and micro-structural properties of slag/fly-ash based engineered cementitious composites under chloride environment and tidal exposure. Cem Concr Compos 134:104789. https://doi.org/10.1016/j.cemconcomp.2022.104789

Article  Google Scholar 

Shumuye ED, Liu J, Li W, Wang Z (2022b) Eco-friendly, high-ductility slag/fly-ash-based engineered cementitious composite (ECC) reinforced with PE fibers. Polymers 14:1760. https://doi.org/10.3390/polym14091760

Article  Google Scholar 

Song H-W, Lee C-H, Ann KY (2008) Factors influencing chloride transport in concrete structures exposed to marine environments. Cem Concr Compos 30:113–121. https://doi.org/10.1016/j.cemconcomp.2007.09.005

Article  Google Scholar 

Ting MZY, Wong KS, Rahman ME, Meheron SJ (2021) Deterioration of marine concrete exposed to wetting-drying action. J Clean Prod 278:123383. https://doi.org/10.1016/j.jclepro.2020.123383

Article  Google Scholar 

Yu Z, Chen Y, Liu P, Wang W (2015) Accelerated simulation of chloride ingress into concrete under drying-wetting alternation condition chloride environment. Constr Build Mater 93:205–213. https://doi.org/10.1016/j.conbuildmat.2015.05.090

Article  Google Scholar 

Yuan Q, Shi C, De Schutter G, Audenaert K, Deng D (2009) Chloride binding of cement-based materials subjected to external chloride environment–a review. Constr Build Mater 23:1–13. https://doi.org/10.1016/j.conbuildmat.2008.02.004

Article  Google Scholar 

Zhao J, Shumuye ED, Wang Z (2021) Effect of slag cement on concrete resistance against combined exposure to freeze-thaw and chloride ingress. J Eng Sci Technol 16:4687–4706

Google Scholar 

Zhao N, Wang S, Quan X, Liu K, Xu J, Xu F (2022) Behavior of fiber reinforced cementitious composites under the coupled attack of sulfate and dry/wet in a tidal environment. Constr Build Mater 314:125673. https://doi.org/10.1016/j.conbuildmat.2021.125673

Article  Google Scholar 

Zhu Y, Yang Y, Yao Y (2012) Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash. Constr Build Mater 36:1076–1081. https://doi.org/10.1016/j.conbuildmat.2012.04.031

Article  Google Scholar 

留言 (0)

沒有登入
gif