Limited HIV-associated neuropathologies and lack of immune activation in sub-saharan African individuals with late-stage subtype C HIV-1 infection

Albalawi YA, Narasipura SD, Olivares LJ, Al-Harthi L (2022) CD4(dim) CD8(bright) T cells home to the brain and mediate HIV Neuroinvasion. J Virol 96(15):e0080422

Article  PubMed  Google Scholar 

Angelovich TA, Cochrane CR, Zhou J, Tumpach C, Byrnes SJ, Jamal Eddine J et al (2023) Regional Analysis of Intact and defective HIV proviruses in the brain of Viremic and virally suppressed people with HIV. Ann Neurol 94(4):798–802

Article  PubMed  PubMed Central  Google Scholar 

Avalos CR, Abreu CM, Queen SE, Li M, Price S, Shirk EN et al (2017) Brain macrophages in simian immunodeficiency Virus-Infected, antiretroviral-suppressed macaques: a functional Latent Reservoir. Mbio;8(4)

Bade AN, Gorantla S, Dash PK, Makarov E, Sajja BR, Poluektova LY et al (2016) Manganese-enhanced magnetic resonance imaging reflects Brain Pathology during Progressive HIV-1 infection of Humanized mice. Mol Neurobiol 53(5):3286–3297

Article  CAS  PubMed  Google Scholar 

Banks WA, Freed EO, Wolf KM, Robinson SM, Franko M, Kumar VB (2001) Transport of human immunodeficiency virus type 1 pseudoviruses across the blood-brain barrier: role of envelope proteins and adsorptive endocytosis. J Virol 75(10):4681–4691

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartsch YC, Loos C, Rossignol E, Fajnzylber JM, Yuan D, Avihingsanon A et al (2021) Viral Rebound kinetics correlate with distinct HIV antibody features. Mbio;12(2)

Bertrand L, Cho HJ, Toborek M (2019) Blood-brain barrier pericytes as a target for HIV-1 infection. Brain 142:502–511

Article  PubMed  PubMed Central  Google Scholar 

Boucher T, Liang SJ, Brown AM (2022) Advancing basic and translational research to deepen understanding of the molecular immune-mediated mechanisms regulating long-term persistence of HIV-1 in microglia in the adult human brain. J Leukoc Biol 112(5):1223–1231

Article  CAS  PubMed  Google Scholar 

Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, De Oliveira MF et al (2020) HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J Clin Invest 130(4):1699–1712

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung HK, Hattler JB, Narola J, Babbar H, Cai Y, Abdel-Mohsen M et al (2022) Development of Droplet Digital PCR-Based assays to quantify HIV Proviral and Integrated DNA in Brain tissues from Viremic individuals with encephalitis and virally suppressed aviremic individuals. Microbiol Spectr 10(1):e0085321

Article  PubMed  Google Scholar 

Cochrane CR, Angelovich TA, Byrnes SJ, Waring E, Guanizo AC, Trollope GS et al (2022) Intact HIV proviruses Persist in the Brain despite viral suppression with ART. Ann Neurol 92(4):532–544

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen MS, Shaw GM, McMichael AJ, Haynes BF (2011) Acute HIV-1 infection. N Engl J Med 364(20):1943–1954

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colby DJ, Trautmann L, Pinyakorn S, Leyre L, Pagliuzza A, Kroon E et al (2018) Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med 24(7):923–926

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das Gupta J, Satishchandra P, Gopukumar K, Wilkie F, Waldrop-Valverde D, Ellis R et al (2007) Neuropsychological deficits in human immunodeficiency virus type 1 clade C-seropositive adults from South India. J Neurovirol 13(3):195–202

Article  CAS  Google Scholar 

de Almeida SM, Ribeiro CE, de Pereira AP, Badiee J, Cherner M, Smith D et al (2013) Neurocognitive impairment in HIV-1 clade C-versus B-infected individuals in Southern Brazil. J Neurovirol 19(6):550–556

Article  PubMed  PubMed Central  Google Scholar 

Del Valle L, Pina-Oviedo S (2006) HIV disorders of the brain: pathology and pathogenesis. Front Biosci 11:718–732

Article  PubMed  Google Scholar 

Dohgu S, Banks WA (2013) Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood-brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids Barriers CNS 10(1):23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA (2022) Identification, quantification, and characterization of HIV-1 reservoirs in the human brain. Cells 11:15

Article  Google Scholar 

Gianella S, Chaillon A, Chun TW, Sneller MC, Ignacio C, Vargas-Meneses MV et al (2020) HIV RNA rebound in seminal plasma after antiretroviral treatment interruption. J Virol;94(15)

Gray F, Lescure FX, Adle-Biassette H, Polivka M, Gallien S, Pialoux G et al (2013) Encephalitis with infiltration by CD8 + lymphocytes in HIV patients receiving combination antiretroviral treatment. Brain Pathol 23(5):525–533

Article  PubMed  PubMed Central  Google Scholar 

Hemelaar J, Elangovan R, Yun J, Dickson-Tetteh L, Fleminger I, Kirtley S et al (2019) Global and regional molecular epidemiology of HIV-1, 1990–2015: a systematic review, global survey, and trend analysis. Lancet Infect Dis 19(2):143–155

Article  PubMed  Google Scholar 

Hong SZ, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12

Article  CAS  PubMed  Google Scholar 

Kaufman R (2020) ART and science of keeping HIV out of the blood supply. Blood 136(11):1223–1224

Article  CAS  PubMed  Google Scholar 

Killingsworth L, Spudich S (2022) Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Semin Immunopathol 44(5):709–724

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kincer LP, Joseph SB, Gilleece MM, Hauser BM, Sizemore S, Zhou S et al (2023) Rebound HIV-1 in cerebrospinal fluid after antiviral therapy interruption is mainly clonally amplified R5 T cell-tropic virus. Nat Microbiol 8(2):260–271

CAS  PubMed  PubMed Central  Google Scholar 

Ko A, Kang G, Hattler JB, Galadima HI, Zhang J, Li Q et al (2019) Macrophages but not astrocytes Harbor HIV DNA in the brains of HIV-1-Infected aviremic individuals on suppressive antiretroviral therapy. J Neuroimmune Pharmacol 14(1):110–119

Article  PubMed  Google Scholar 

Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB et al (2016) HIV DNA is frequently present within Pathologic Tissues Evaluated at autopsy from combined antiretroviral therapy-treated patients with undetectable viral loads. J Virol 90(20):8968–8983

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z, Julius P, Kang G, West JT, Wood C (2022a) Subtype C HIV-1 reservoirs throughout the body in ART-suppressed individuals. JCI Insight;7(20)

Liu X, Bae C, Gelman BB, Chung JM, Tang SJ (2022b) A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain 145(11):4108–4123

Article  PubMed  PubMed Central  Google Scholar 

Lu SM, Tremblay ME, King IL, Qi J, Reynolds HM, Marker DF et al (2011) HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PLoS ONE 6(9):e23915

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lutgen V, Narasipura SD, Barbian HJ, Richards M, Wallace J, Razmpour R et al (2020) HIV infects astrocytes in vivo and egresses from the brain to the periphery. PLoS Pathog 16(6):e1008381

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mastrorosa I, Pinnetti C, Brita AC, Mondi A, Lorenzini P, Del Duca G et al (2023) Declining prevalence of human immunodeficiency virus (HIV)-Associated Neurocognitive disorders in recent years and Associated Factors in a large cohort of antiretroviral therapy-treated individuals living with HIV. Clin Infect Dis 76(3):E629–E37

Article  CAS  PubMed  Google Scholar 

McMyn NF, Varriale J, Fray EJ, Zitzmann C, MacLeod H, Lai J et al (2023) The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy. J Clin Invest;133(17)

Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P (2008) Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol 63(3):366–376

Article  CAS 

留言 (0)

沒有登入
gif