A safe and potentiated multi-type HPV L2-E7 nanoparticle vaccine with combined prophylactic and therapeutic activity

World Health Organization [Internet]. Human papillomavirus vaccines: WHO position paper (2022 update). Available from: https://www.who.int/publications/i/item/who-wer9750-645-672.

zur Hausen, H. Papillomaviruses in the causation of human cancers—a brief historical account. Virology 384, 260–265 (2009).

Article  CAS  PubMed  Google Scholar 

zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2, 342–350 (2002).

Article  CAS  PubMed  Google Scholar 

Thomsen, L. T. & Kjær, S. K. Human papillomavirus (HPV) testing for cervical cancer screening in a middle-income country: comment on a large real-world implementation study in China. BMC Med. 19, 165 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Lehtinen, M. & Dillner, J. Clinical trials of human papillomavirus vaccines and beyond. Nat. Rev. Clin. Oncol. 10, 400–410 (2013).

Article  CAS  PubMed  Google Scholar 

Huh, W. K. et al. Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16–26 years: a randomised, double-blind trial. Lancet (Lond., Engl.) 390, 2143–2159 (2017).

Article  CAS  Google Scholar 

Hildesheim, A. et al. Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. Jama 298, 743–753 (2007).

Article  CAS  PubMed  Google Scholar 

Garland, S. M. et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med. 356, 1928–1943 (2007).

Article  CAS  PubMed  Google Scholar 

Tsu, V. D., LaMontagne, D. S., Atuhebwe, P., Bloem, P. N. & Ndiaye, C. National implementation of HPV vaccination programs in low-resource countries: Lessons, challenges, and future prospects. Prevent. Med. 144, 106335 (2021).

Article  Google Scholar 

Lin, K., Doolan, K., Hung, C. F. & Wu, T. C. Perspectives for preventive and therapeutic HPV vaccines. J. Formos. Med. Assoc. Taiwan yi zhi 109, 4–24 (2010).

Article  CAS  PubMed  Google Scholar 

Cordeiro, M. N. et al. Current research into novel therapeutic vaccines against cervical cancer. 18, 365–376, https://doi.org/10.1080/14737140.2018.1445527 (2018).

Roden, R. B., Ling, M. & Wu, T. C. Vaccination to prevent and treat cervical cancer. Hum. Pathol. 35, 971–982 (2004).

Article  PubMed  Google Scholar 

Smalley Rumfield, C., Roller, N. & Pellom, S. T. Therapeutic vaccines for HPV-associated malignancies. 9, 167–200, https://doi.org/10.2147/itt.s273327 (2020).

Huber, B., Wang, J. W., Roden, R. B. S. & Kirnbauer, R. RG1-VLP and other L2-based, broad-spectrum HPV vaccine candidates. J. Clin. Med. 10, https://doi.org/10.3390/jcm10051044 (2021).

Áyen, Á., Jiménez Martínez, Y. & Boulaiz, H. Targeted gene delivery therapies for cervical cancer. 12, https://doi.org/10.3390/cancers12051301 (2020).

Muller, M. et al. Chimeric papillomavirus-like particles. Virology 234, 93–111 (1997).

Article  CAS  PubMed  Google Scholar 

Greenstone, H. L. et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc. Natl Acad. Sci. USA 95, 1800–1805 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van der Burg, S. H. et al. Pre-clinical safety and efficacy of TA-CIN, a recombinant HPV16 L2E6E7 fusion protein vaccine, in homologous and heterologous prime-boost regimens. Vaccine 19, 3652–3660 (2001).

Article  PubMed  Google Scholar 

Kim, D. et al. Generation and characterization of a preventive and therapeutic HPV DNA vaccine. Vaccine 26, 351–360 (2008).

Article  CAS  PubMed  Google Scholar 

Kirnbauer, R. et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J. Virol. 67, 6929–6936 (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Y. F. et al. Encapsidating artificial human papillomavirus-16 mE7 protein in human papillomavirus-6b L1/L2 virus like particles. Chin. Med. J. 120, 503–508 (2007).

Article  CAS  PubMed  Google Scholar 

Davidson, E. J. et al. Effect of TA-CIN (HPV 16 L2E6E7) booster immunisation in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7). Vaccine 22, 2722–2729 (2004).

Article  CAS  PubMed  Google Scholar 

Peng, S. et al. Control of HPV-associated tumors by innovative therapeutic HPV DNA vaccine in the absence of CD4+ T cells. Cell Biosci. 4, 11 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Canali, E. et al. A high-performance thioredoxin-based scaffold for peptide immunogen construction: proof-of-concept testing with a human papillomavirus epitope. Sci. Rep. 4, 4729 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Seitz, H. et al. A three component mix of thioredoxin-L2 antigens elicits broadly neutralizing responses against oncogenic human papillomaviruses. Vaccine 32, 2610–2617 (2014).

Article  CAS  PubMed  Google Scholar 

Seitz, H. et al. Robust in vitro and in vivo neutralization against multiple high-risk HPV types induced by a thermostable thioredoxin-L2 vaccine. Cancer Prev. Res. (Phila) 8, 932–941 (2015).

Article  CAS  PubMed  Google Scholar 

Del Campo, J. & Pizzorno, A. OVX836 a recombinant nucleoprotein vaccine inducing cellular responses and protective efficacy against multiple influenza A subtypes. 4, 4, https://doi.org/10.1038/s41541-019-0098-4 (2019).

Ogun, S. A., Dumon-Seignovert, L., Marchand, J. B., Holder, A. A. & Hill, F. The oligomerization domain of C4-binding protein (C4bp) acts as an adjuvant, and the fusion protein comprised of the 19-kilodalton merozoite surface protein 1 fused with the murine C4bp domain protects mice against malaria. Infect. Immun. 76, 3817–3823 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minhinnick, A. et al. A first-in-human phase 1 trial to evaluate the safety and immunogenicity of the candidate tuberculosis vaccine MVA85A-IMX313, administered to BCG-vaccinated adults. Vaccine 34, 1412–1421 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y. et al. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology. Sci. Rep. 6, 18848 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer, A. J. et al. Fusion of the Mycobacterium tuberculosis antigen 85A to an oligomerization domain enhances its immunogenicity in both mice and non-human primates. PloS One 7, e33555 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, X., Yang, F., Mariz, F. & Osen, W. Combined prophylactic and therapeutic immune responses against human papillomaviruses induced by a thioredoxin-based L2-E7 nanoparticle vaccine. 16, e1008827, https://doi.org/10.1371/journal.ppat.1008827 (2020).

OSIVAX [Internet] Available from: https://osivax.com/technology/.

Spagnoli, G. et al. Broadly neutralizing antiviral responses induced by a single-molecule HPV vaccine based on thermostable thioredoxin-L2 multiepitope nanoparticles. Sci. Rep. 7, 18000 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Pouyanfard, S. et al. Minor capsid protein L2 polytope induces broad protection against oncogenic and mucosal human papillomaviruses. J. Virol. 92, https://doi.org/10.1128/jvi.01930-17 (2018).

Jin, L. et al. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J. Immunol. (Baltim., Md.: 1950) 187, 2595–2601 (2011).

Article  CAS  Google Scholar 

Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif