Electro-Fenton degradation of diclofenac: study of the effect of the operating variables on degradation kinetics and the mineralization of the pollutant

Arguello-Pérez M, ángel, Mendoza-Pérez JA, Tintos-Gómez A, Ramírez-Ayala E, Godínez-Domínguez E, de Silva-Bátiz F, (2019) A Ecotoxicological analysis of emerging contaminants from wastewater discharges in the Coastal Zone of Cihuatlán (Jalisco, Mexico). Water 11(7):1386. https://doi.org/10.3390/w11071386

Article  CAS  Google Scholar 

Samal K, Mahapatra S, Hibzur Ali M (2022) Pharmaceutical wastewater as emerging contaminants (EC): treatment technologies, impact on environment and human health. Energy Nexus 6:100076. https://doi.org/10.1016/j.nexus.2022.100076

Article  CAS  Google Scholar 

Castro L, Baños M, López M, Torres B (2015) Ecofarmacovigilancia en México: perspectivas para su implementación. Rev Mex Ciencias Farm 46:16–40

Google Scholar 

Shamsudin MS, Azha SF, Ismail S (2022) A review of diclofenac occurrences, toxicology, and potential adsorption of clay-based materials with surfactant modifier. J Environ Chem Eng 10:107541. https://doi.org/10.1016/j.jece.2022.107541

Article  CAS  Google Scholar 

Siemens J, Huschek G, Siebe C, Kaupenjohann M (2008) Concentrations and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system, Mexico City-Mezquital Valley. Water Res 42:2124–2134. https://doi.org/10.1016/j.watres.2007.11.019

Article  CAS  PubMed  Google Scholar 

Gibson R, Durán-Álvarez JC, Estrada KL, Chávez A, Jiménez Cisneros B (2010) Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley. Mexico Chemosphere 81:1437–1445. https://doi.org/10.1016/j.chemosphere.2010.09.006

Article  ADS  CAS  PubMed  Google Scholar 

Vázquez-Tapia I, Salazar-Martínez T, Acosta-Castro M, Meléndez-Castolo KA, Mahlknecht J, Cervantes-Avilés P, Capparelli MV, Mora A (2022) Occurrence of emerging organic contaminants and endocrine disruptors in different water compartments in Mexico – A review. Chemosphere 308:136285. https://doi.org/10.1016/j.chemosphere.2022.136285

Article  ADS  CAS  PubMed  Google Scholar 

Félix-Cañedo TE, Durán-Álvarez JC, Jiménez-Cisneros B (2013) The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci Total Environ 454–455:109–118. https://doi.org/10.1016/j.scitotenv.2013.02.088

Article  CAS  PubMed  Google Scholar 

Pérez-Alvarez I, Islas-Flores H, Gómez-Oliván LM, Barceló D, López De Alda M, Pérez Solsona S, Sánchez-Aceves L, SanJuan-Reyes N, Galar-Martínez M (2018) Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact. Environ Pollut 240:330–341. https://doi.org/10.1016/j.envpol.2018.04.116

Article  CAS  PubMed  Google Scholar 

Sandoval-González A, Robles I, Pineda-Arellano CA, Martínez-Sánchez C (2022) Removal of anti-inflammatory drugs using activated carbon from agro-industrial origin: current advances in kinetics, isotherms, and thermodynamic studies. J Iran Chem Soc 19:4017–4033. https://doi.org/10.1007/s13738-022-02588-7

Article  CAS  Google Scholar 

Guo H, Xu Z, Wang D, Chen S, Qiao D, Wan D, Xu H, Yan W, Jin X (2022) Evaluation of diclofenac degradation effect in active and non-active anodes: a new consideration about mineralization inclination. Chemosphere 286:131580. https://doi.org/10.1016/j.chemosphere.2021.131580

Article  ADS  CAS  PubMed  Google Scholar 

Yuan Q, Qu S, Li R, Huo ZY, Gao Y, Luo Y (2023) Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): performance, mechanisms, and perspectives. Sci Total Environ 856:159092. https://doi.org/10.1016/j.scitotenv.2022.159092

Article  ADS  CAS  PubMed  Google Scholar 

Martínez-Sánchez C, Robles I, Godínez LA (2022) Review of recent developments in electrochemical advanced oxidation processes: application to remove dyes, pharmaceuticals, and pesticides. Int J Environ Sci Technol. 19:12611–12678

Article  Google Scholar 

Seibert D, Zorzo CF, Borba FH, de Souza RM, Quesada HB, Bergamasco R, Baptista AT, Inticher JJ (2020) Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced oxidation processes: a review. Sci Total Environ 748:141527. https://doi.org/10.1016/j.scitotenv.2020.141527

Article  ADS  CAS  PubMed  Google Scholar 

Long Y, Feng Y, Li X, Suo N, Chen H, Wang Z, Yu Y (2019) Removal of diclofenac by three-dimensional electro-Fenton-persulfate (3D electro-Fenton-PS). Chemosphere 219:1024–1031. https://doi.org/10.1016/j.chemosphere.2018.12.054

Article  ADS  CAS  PubMed  Google Scholar 

Rosales E, Diaz S, Pazos M, Sanromán MA (2019) Comprehensive strategy for the degradation of anti-inflammatory drug diclofenac by different advanced oxidation processes. Sep Purif Technol 208:130–141. https://doi.org/10.1016/j.seppur.2018.04.014

Article  CAS  Google Scholar 

Pourzamani H, Hajizadeh Y, Mengelizadeh N (2018) Application of three-dimensional electrofenton process using MWCNTs-Fe3O4 nanocomposite for removal of diclofenac. Process Saf Environ Prot 119:271–284. https://doi.org/10.1016/j.psep.2018.08.014

Article  CAS  Google Scholar 

Yu F, Chen Y, Ma H (2018) Ultrahigh yield of hydrogen peroxide and effective diclofenac degradation on a graphite felt cathode loaded with CNTs and carbon black: an electro-generation mechanism and a degradation pathway. New J Chem 42:4485–4494. https://doi.org/10.1039/c7nj04925k

Article  CAS  Google Scholar 

Mussa ZH, Al-Qaim FF, Othman MR, Abdullah MP, Latip J, Zakria Z (2017) Pseudo first order kinetics and proposed transformation products pathway for the degradation of diclofenac using graphite–PVC composite as anode. J Taiwan Inst Chem Eng 72:37–44. https://doi.org/10.1016/j.jtice.2016.12.031

Article  CAS  Google Scholar 

Nidheesh PV, Gandhimathi R (2014) Effect of solution pH on the performance of three electrolytic advanced oxidation processes for the treatment of textile wastewater and sludge characteristics. RSC Adv 4:27946–27954. https://doi.org/10.1039/c4ra02958e

Article  ADS  CAS  Google Scholar 

Kumar A, Omar RA, Verma N (2020) Efficient electro-oxidation of diclofenac persistent organic pollutant in wastewater using carbon film-supported Cu-rGO electrode. Chemosphere 248:126030. https://doi.org/10.1016/j.chemosphere.2020.126030

Article  ADS  CAS  PubMed  Google Scholar 

Fernández D, Robles I, Rodríguez-Valadez FJ, Godínez LA (2018) Novel arrangement for an electro-Fenton reactor that does not require addition of iron, acid and a final neutralization stage. Towards the development of a cost-effective technology for the treatment of wastewater. Chemosphere 199:251–255. https://doi.org/10.1016/j.chemosphere.2018.02.036

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

García-Espinoza JD, Robles I, Gil V, Becerril-Bravo E, Barrios JA, Godínez LA (2019) Electrochemical degradation of triclosan in aqueous solution. A study of the performance of an electro-Fenton reactor. J Environ Chem Eng 7:103228. https://doi.org/10.1016/j.jece.2019.103228

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Espinoza JD, Robles I, Durán-Moreno A, Godínez LA (2021) Study of simultaneous electro-Fenton and adsorption processes in a reactor containing porous carbon electrodes and particulate activated carbon. J Electroanal Chem 895:0–11. https://doi.org/10.1016/j.jelechem.2021.115476

Article  CAS  Google Scholar 

Zhu Q, Mao S (2019) Enhanced drug loading efficiency of contact lenses via salt-induced modulation. Asian J Pharm Sci 14:204–215. https://doi.org/10.1016/j.ajps.2018.05.002

Article  PubMed  Google Scholar 

Estrada-Arriaga EB, Mijaylova PN (2011) Influence of operational parameters (sludge retention time and hydraulic residence time) on the removal of estrogens by membrane bioreactor. Environ Sci Pollut Res 18:1121–1128. https://doi.org/10.1007/s11356-011-0461-0

Article  CAS  Google Scholar 

Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manage 190:274–282. https://doi.org/10.1016/j.jenvman.2016.12.073

Article  CAS  PubMed 

留言 (0)

沒有登入
gif