Acharya NP, Lamichhane TR, Jha B. Quality assurance with dosimetric consistency of a Co-60 teletherapy unit. J Nepal Phys Soc. 2017;4(1):88–92.
Dracham CB, Shankar A, Madan R. Radiation induced secondary malignancies: a review article. Radiat Oncol J. 2018;36(2):85.
Article PubMed PubMed Central Google Scholar
Mazonakis M, Damilakis J. Out-of-field organ doses and associated risk of cancer development following radiation therapy with photons. Physica Med. 2021;90:73–82.
Schneider CW. Stray radiation dose from X-ray and proton beam radiation therapies. LSU Doctoral Dissertations; 2019. p, 4971. https://repository.lsu.edu/gradschool_dissertations/4971.
Society AC. Cancer treatment and survivorship facts & figures 2014–2015. Atlanta: American Cancer Society; 2014. p. 2014.
Newhauser W. Physician characteristics and distribution in the US: American Medical Association Press; 1999.
Council NR. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. 2006. https://doi.org/10.31390/gradschool_dissertations.4971.
De Gonzalez AB, Apostoaei AI, Veiga LH, Rajaraman P, Thomas BA, Hoffman FO, et al. RadRAT: a radiation risk assessment tool for lifetime cancer risk projection. J Radiol Prot. 2012;32(3):205.
Taddei PJ, Khater N, Zhang R, Geara FB, Mahajan A, Jalbout W, et al. Inter-institutional comparison of personalized risk assessments for second malignant neoplasms for a 13-year-old girl receiving proton versus photon craniospinal irradiation. Cancers. 2015;7(1):407–26.
Article CAS PubMed PubMed Central Google Scholar
van der Giessen P-H. Peridose, a software program to calculate the dose outside the primary beam in radiation therapy. Radiother Oncol. 2001;58(2):209–13.
Vlachopoulou V, Malatara G, Delis H, Theodorou K, Kardamakis D, Panayiotakis G. Peripheral dose measurement in high-energy photon radiotherapy with the implementation of MOSFET. World journal of radiology. 2010;2(11):434.
Article PubMed PubMed Central Google Scholar
Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci. 2003;100(24):13761–6.
Article CAS PubMed PubMed Central Google Scholar
Dörr W, Herrmann T. Cancer induction by radiotherapy: dose dependence and spatial relationship to irradiated volume. J Radiol Prot. 2002;22(3A):A117.
Brenner DJ, Curtis RE, Hall EJ, Ron E. Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer. 2000;88(2):398–406.
Article CAS PubMed Google Scholar
Brenner DJ, Sachs RK. Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach. Radiat Environ Biophys. 2006;44:253–6.
Shahban M, Hussain B, Mehmood K, Rehman SU. Estimation of peripheral dose from Co beam in water phantom measured in Secondary Standard Dosimetry Laboratory, Pakistan. Rep Pract Oncol Radiother. 2017;22(3):212–6.
Article PubMed PubMed Central Google Scholar
McParland BJ, Fair HI. A method of calculating peripheral dose distributions of photon beams below 10 MV. Med Phys. 1992;19(2):283–93.
Article CAS PubMed Google Scholar
Kase KR, Svensson GK, Wolbarst AB, Marks MA. Measurements of dose from secondary radiation outside a treatment field. Int J Radiat Oncolo Biol Phys. 1983;9(8):1177–83.
Ruben JD, Lancaster CM, Jones P, Smith RL. A comparison of out-of-field dose and its constituent components for intensity-modulated radiation therapy versus conformal radiation therapy: implications for carcinogenesis. Int J Radiat Oncol Biol Phys. 2011;81(5):1458–64.
Stovall M, Blackwell CR, Cundiff J, Novack DH, Palta JR, Wagner LK, et al. Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36. Med Phys. 1995;22(1):63–82.
Article CAS PubMed Google Scholar
Sánchez-Nieto B, Medina-Ascanio KN, Rodríguez-Mongua JL, Doerner E, Espinoza I. Study of out-of-field dose in photon radiotherapy: a commercial treatment planning system versus measurements and Monte Carlo simulations. Med Phys. 2020;47(9):4616–25.
Howell RM, Scarboro SB, Kry S, Yaldo DZ. Accuracy of out-of-field dose calculations by a commercial treatment planning system. Phys Med Biol. 2010;55(23):6999.
Article PubMed PubMed Central Google Scholar
Azab H, Moussa R, Kamaleldin M. Peripheral photon doses from different techniques delivered in prostate radiotherapy: experimental measurements and TPS calculations. Arab J Nucl Sci Appl. 2020;53(1):67–75.
Sánchez-Nieto B, Romero-Expósito M, Terrón JA, Sánchez-Doblado F. Uncomplicated and Cancer-Free Control Probability (UCFCP): a new integral approach to treatment plan optimization in photon radiation therapy. Physica Med. 2017;42:277–84.
Schneider U. Modeling the risk of secondary malignancies after radiotherapy. Genes. 2011;2(4):1033–49.
Article CAS PubMed PubMed Central Google Scholar
Hall EJ, Wuu C-S. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003;56(1):83–8.
Sánchez-Nieto B, El-Far R, Irazola L, Romero-Expósito M, Lagares J, Mateo J, et al. Analytical model for photon peripheral dose estimation in radiotherapy treatments. Biomed Phys Eng Express. 2015;1(4):045205.
Sánchez-Nieto B, Irazola L, Romero-Expósito M, Terrón J, Sánchez-Doblado F. PO-0808: validation of a clinical peripheral photon dose model: prostate IMRT irradiation of Alderson phantom. Radiother Oncol. 2016;1(119):S381–2.
Hauri P, Hälg RA, Besserer J, Schneider U. A general model for stray dose calculation of static and intensity-modulated photon radiation. Med Phys. 2016;43(4):1955–68.
Article CAS PubMed Google Scholar
Schneider CW, Newhauser WD, Wilson LJ, Kapsch R-P. A physics-based analytical model of absorbed dose from primary, leakage, and scattered photons from megavoltage radiotherapy with MLCs. Phys Med Biol. 2019;64(18):185017.
Article CAS PubMed Google Scholar
Wilson LJ, Newhauser WD, Schneider CW, Kamp F, Reiner M, Martins JC, et al. Method to quickly and accurately calculate absorbed dose from therapeutic and stray photon exposures throughout the entire body in individual patients. Med Phys. 2020;47(5):2254–66.
Article CAS PubMed Google Scholar
Chen YS, Wu SW, Huang HC, Chen HH. Absolute dose measurement and energy dependence of LiF dosimeters in proton therapy beam dosimetry. Therapeutic Radiol Oncol. 2022;6. https://doi.org/10.21037/tro-22-16.
Adams E, Warrington A. A comparison between cobalt and linear accelerator-based treatment plans for conformal and intensity-modulated radiotherapy. Br J Radiol. 2008;81(964):304–10.
Article CAS PubMed Google Scholar
Ravichandran R. Has the time come for doing away with cobalt-60 teletherapy for cancer treatments. J Med Phys Assoc Medi Phys India. 2009;34(2):63.
Bucci MK, Bevan A, Roach M III. Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin. 2005;55(2):117–34.
van der Molen L, Heemsbergen WD, de Jong R, van Rossum MA, Smeele LE, Rasch CR, et al. Dysphagia and trismus after concomitant chemo-Intensity-Modulated Radiation Therapy (chemo-IMRT) in advanced head and neck cancer; dose–effect relationships for swallowing and mastication structures. Radiother Oncol. 2013;106(3):364–9.
Joshi CP, Dhanesar S, Darko J, Kerr A, Vidyasagar P, Schreiner LJ. Practical and clinical considerations in cobalt-60 tomotherapy. J Med Phys Assoc Med Phys India. 2009;34(3):137.
Joshi CP, Darko J, Vidyasagar P, Schreiner LJ. Investigation of an efficient source design for cobalt-60-based tomotherapy using EGSnrc Monte Carlo simulations. Phys Med Biol. 2008;53(3):575.
留言 (0)