Predictive role of ITPA genetic variants in thiopurine-related myelotoxicity in Crohn’s disease patients

Mowat C, Cole A, Windsor A, Ahmad T, Arnott I, Driscoll R, et al. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2011;60:571–607. https://doi.org/10.1136/gut.2010.224154

Article  PubMed  Google Scholar 

Chatu S, Subramanian V, Saxena S, Pollok RC. The role of thiopurines in reducing the need for surgical resection in Crohn’s disease: a systematic review and meta-analysis. Am J Gastroenterol. 2012;107:23–34. https://doi.org/10.1038/ajg.2011.401

Article  Google Scholar 

Peyrin-Biroulet L, Khosrotehrani K, Carrat F, Bouvier AM, Chevaux JB, Simon T, et al. Azathioprine and 6-mercaptopurine for the prevention of postoperative recurrence in Crohn’s disease: a meta-analysis. Am J Gastroenterol. 2009;104:2089–96. https://doi.org/10.1038/ajg.2009.301

Article  CAS  PubMed  Google Scholar 

Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362:1383–95. https://doi.org/10.1056/NEJMoa0904492

Article  CAS  PubMed  Google Scholar 

Chaparro M, Panés J, García V, Mendoza JL, Bermejo F, López San Román A, et al. Safety of thiopurine therapy in inflammatory bowel disease: Long-term follow-up study of 3931 patients. Inflamm Bowel Dis. 2013;19:1404–10. https://doi.org/10.1097/MIB.0b013e318281f28f

Article  PubMed  Google Scholar 

Schwab M, Schäffeler E, Marx C, Fischer C, Lang T, Behrens C, et al. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics. 2002;12:429–36. https://doi.org/10.1097/00008571-200208000-00003

Article  CAS  PubMed  Google Scholar 

Chande N, Laidlaw M, McDonald JW, Macdonald JK. Azathioprine or 6-mercaptopurine for induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 2013;10:CD000545 https://doi.org/10.1002/14651858.CD000545.pub5

Article  Google Scholar 

Friedman AB, Sparrow MP, Gibson PR. The role of thiopurine metabolites in inflammatory bowel disease and rheumatological disorders. Int J Rheum Dis. 2014;17:132–41. https://doi.org/10.1111/1756-185X.12204

Article  CAS  PubMed  Google Scholar 

Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst. 1999;91:2001–8.

Article  CAS  PubMed  Google Scholar 

Chouchana L, Narjoz C, Beaune P, Loriot MA, Roblin X. Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2012;35:15–36. https://doi.org/10.1111/j.1365-2036.2011.04905.x

Article  CAS  PubMed  Google Scholar 

Higgs JE, Payne K, Roberts C, Newman WG. Are patients with intermediate TPMT activity at increased risk of myelosuppression when taking thiopurine medications? Pharmacogenomics. 2010;11:177–88. https://doi.org/10.2217/pgs.09.155

Article  CAS  PubMed  Google Scholar 

Gearry RB, Barclay ML, Burt MJ, Collett JA, Chapman BA, Roberts RL, et al. Thiopurine S-methyltransferase (TPMT) genotype does not predict adverse drug reactions to thiopurine drugs in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2003;18:395–400. https://doi.org/10.1046/j.1365-2036.2003.01690.x

Article  CAS  PubMed  Google Scholar 

Colombel JF, Ferrari N, Debuysère H, Marteau P, Gendre JP, Bonaz B, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000;118:1025–30. https://doi.org/10.1016/S0016-5085(00)70354-4

Article  CAS  PubMed  Google Scholar 

Ansari A, Arenas M, Greenfield SM, Morris D, Lindsay J, Gilshenan K, et al. Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease. Aliment Pharmacol Ther. 2002;16:1743–50. https://doi.org/10.1046/j.1365-2036.2002.01353.x

Article  CAS  PubMed  Google Scholar 

Sumi S, Marinaki AM, Arenas M, Fairbanks L, Shobowale-Bakre EM, Rees DC, et al. Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum Genet. 2002;111:360–7. https://doi.org/10.1007/s00439-002-0798-z

Article  CAS  PubMed  Google Scholar 

Marinaki AM, Duley JA, Arenas M, Sumi S, Lewis CM, Shobowale-Bakre M, et al. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics. 2004;14:181–7. https://doi.org/10.1097/00008571-200403000-00006

Article  CAS  PubMed  Google Scholar 

Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016;48:367–73. https://doi.org/10.1038/ng.3508

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang JJ, Whirl-Carrillo M, Scott SA, Turner AJ, Schwab M, Tanaka Y, et al. Pharmacogene variation consortium gene introduction: NUDT15. Clin Pharmacol Ther. 2019;105:1091–4. https://doi.org/10.1002/cpt.1411

Article  PubMed  Google Scholar 

Maaser C, Sturm A, Vavricka SR, Kucharzik T, Fiorino G, Annese V, et al. ECCO-ESGAR guideline for diagnostic assessment in IBD Part 1: initial diagnosis, monitoring of known IBD, detection of complications. J Crohns Colitis. 2019;13:144–64. https://doi.org/10.1093/ecco-jcc/jjy113

Article  PubMed  Google Scholar 

Silverberg MS, Satsangi J, Ahmad T, Arnott ID, Bernstein CN, Brant SR, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19:5–36.

Article  Google Scholar 

Harvey RF, Bradshaw JM. A simple index of Crohn’s disease activity. Lancet. 1980;1:514.

Article  CAS  PubMed  Google Scholar 

Campbell S, Kingstone K, Ghosh S. Relevance of thiopurine methyltransferase activity in inflammatory bowel disease patients maintained on low-dose azathioprine. Aliment Pharmacol Ther. 2002;16:389–98. https://doi.org/10.1046/j.1365-2036.2002.01177.x

Article  CAS  PubMed  Google Scholar 

Zelinkova Z, Derijks LJ, Stokkers PC, Vogels EW, van Kampen AH, Curvers WL, et al. Inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin Gastroenterol Hepatol. 2006;4:44–49. https://doi.org/10.1016/j.cgh.2005.10.019

Article  CAS  PubMed  Google Scholar 

Dewit O, Moreels T, Baert F, Peeters H, Reenaers C, de Vos M, et al. Limitations of extensive TPMT genotyping in the management of azathioprine-induced myelosuppression in IBD patients. Clin Biochem. 2011;44:1062–6. https://doi.org/10.1016/j.clinbiochem.2011.06.079

Article  CAS  PubMed  Google Scholar 

Ansari A, Arenas M, Greenfield SM, Morris D, Lindsay J, Gilshenan K, et al. Prospective evaluation of the pharmacogenetics of azathioprine in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 2008;28:973–83. https://doi.org/10.1111/j.1365-2036.2008.03788.x

Article  CAS  PubMed  Google Scholar 

Hindorf U, Lindqvist M, Peterson C, Söderkvist P, Ström M, Hjortswang H, et al. Pharmacogenetics during standardised initiation of thiopurine treatment in inflammatory bowel disease. Gut. 2006;55:1423–31. https://doi.org/10.1136/gut.2005.074930

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Dieren JM, van Vuuren AJ, Kusters JG, Nieuwenhuis EE, Kuipers EJ, van der Woude CJ. ITPA genotyping is not predictive for the development of side effects in AZA treated inflammatory bowel disease patients. Gut. 2005;54:1664.

PubMed  PubMed Central  Google Scholar 

Gutiérrez-Valencia M, Leache L, Saiz LC, Beloqui JJ, Barajas M, Vicuña M, et al. Role of pharmacogenomics in the efficacy and safety of thiopurines in inflammatory bowel disease: a systematic review and meta-analysis. J Clin Gastroenterol. 2023;57:671–85.

Article  PubMed 

留言 (0)

沒有登入
gif