Graph analysis uncovers an opposing impact of methylphenidate on connectivity patterns within default mode network sub-divisions

Petersen SE, Sporns O. Brain networks and cognitive architectures. Neuron. 2015;88(1):207–19. https://doi.org/10.1016/j.neuron.2015.09.027. PubMed PMID: 26447582; PubMed Central PMCID: PMCPMC4598639.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700 – 11. https://doi.org/10.1038/nrn2201. PubMed PMID: 17704812.

Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8. https://doi.org/10.1073/pnas.0135058100. PubMed PMID: 12506194; PubMed Central PMCID: PMCPMC140943.

Article  CAS  PubMed  Google Scholar 

Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp. 2009;30(2):625–37. https://doi.org/10.1002/hbm.20531. PubMed PMID: 18219617; PubMed Central PMCID: PMCPMC3654104.

Article  PubMed  Google Scholar 

Seghier ML, Price CJ. Functional heterogeneity within the Default Network during semantic Processing and Speech Production. Front Psychol. 2012;3:281. https://doi.org/10.3389/fpsyg.2012.00281. PubMed PMID: 22905029; PubMed Central PMCID: PMCPMC3417693.

Article  PubMed  PubMed Central  Google Scholar 

Salomon R, Levy DR, Malach R. Deconstructing the default: cortical subdivision of the default mode/intrinsic system during self-related processing. Hum Brain Mapp. 2014;35(4):1491–502. https://doi.org/10.1002/hbm.22268. PubMed PMID: 23568328; PubMed Central PMCID: PMCPMC6869590.

Article  PubMed  Google Scholar 

Buckner RL, DiNicola LM. The brain’s default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci. 2019;20(10):593–608. https://doi.org/10.1038/s41583-019-0212-7. PubMed PMID: 31492945.

Article  CAS  PubMed  Google Scholar 

Kim H. A dual-subsystem model of the brain’s default network: self-referential processing, memory retrieval processes, and autobiographical memory retrieval. NeuroImage. 2012;61(4):966–77. https://doi.org/10.1016/j.neuroimage.2012.03.025. PubMed PMID: 22446489.

Article  CAS  PubMed  Google Scholar 

Braga RM, Buckner RL. Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity. Neuron. 2017;95(2):457 – 71 e5. https://doi.org/10.1016/j.neuron.2017.06.038. PubMed PMID: 28728026; PubMed Central PMCID: PMCPMC5519493.

Braga RM, Van Dijk KRA, Polimeni JR, Eldaief MC, Buckner RL. Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J Neurophysiol. 2019;121(4):1513–34. https://doi.org/10.1152/jn.00808.2018. PubMed PMID: 30785825; PubMed Central PMCID: PMCPMC6485740.

Article  PubMed  PubMed Central  Google Scholar 

Seitzman BA, Gratton C, Marek S, Raut RV, Dosenbach NUF, Schlaggar BL, et al. A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. NeuroImage. 2020;206:116290. https://doi.org/10.1016/j.neuroimage.2019.116290. PubMed PMID: 31634545; PubMed Central PMCID: PMCPMC6981071.

Article  PubMed  Google Scholar 

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–65. https://doi.org/10.1152/jn.00338.2011. PubMed PMID: 21653723; PubMed Central PMCID: PMCPMC3174820.

Article  PubMed  Google Scholar 

Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655–67. https://doi.org/10.1007/s00429-010-0262-0. PubMed PMID: 20512370; PubMed Central PMCID: PMCPMC2899886.

Article  PubMed  PubMed Central  Google Scholar 

Wang KS, Brown K, Frederick BB, Moran LV, Olson D, Pizzagalli DA, et al. Nicotine acutely alters temporal properties of resting brain states. Drug Alcohol Depend. 2021;226:108846. https://doi.org/10.1016/j.drugalcdep.2021.108846. PubMed PMID: 34198131; PubMed Central PMCID: PMCPMC8355138.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaiser RH, Chase HW, Phillips ML, Deckersbach T, Parsey RV, Fava M, et al. Dynamic resting-state network biomarkers of antidepressant treatment response. Biol Psychiatry. 2022;92(7):533–42. PubMed PMID: 35680431.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506. 003. PubMed PMID: 21908230.

Article  PubMed  Google Scholar 

Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-Scale Network Dysfunction in Major Depressive disorder: a Meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72(6):603–11. https://doi.org/10.1001/jamapsychiatry.2015.0071. PubMed PMID: 25785575; PubMed Central PMCID: PMCPMC4456260.

Article  PubMed  PubMed Central  Google Scholar 

Olson EA, Kaiser RH, Pizzagalli DA, Rauch SL, Rosso IM. Regional Prefrontal resting-state functional connectivity in posttraumatic stress disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(4):390–8. https://doi.org/10.1016/j.bpsc.2018.09.012. PubMed PMID: 30449518; PubMed Central PMCID: PMCPMC6447465.

Article  PubMed  Google Scholar 

Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry. 2006;60(10):1111–20. https://doi.org/10.1016/j.biopsych.2006.04.022. PubMed PMID: 16806100.

Article  CAS  PubMed  Google Scholar 

Picon FA, Sato JR, Anes M, Vedolin LM, Mazzola AA, Valentini BB, et al. Methylphenidate Alters Functional Connectivity of Default Mode Network in Drug-Naive male adults with ADHD. J Atten Disord. 2020;24(3):447–55. doi: 10.1177/1087054718816822. PubMed PMID: 30526190.

Article  PubMed  Google Scholar 

Cary RP, Ray S, Grayson DS, Painter J, Carpenter S, Maron L, et al. Network structure among Brain systems in adult ADHD is uniquely modified by Stimulant Administration. Cereb Cortex. 2017;27(8):3970–9. https://doi.org/10.1093/cercor/bhw209. PubMed PMID: 27422412; PubMed Central PMCID: PMCPMC6248828.

Article  PubMed  Google Scholar 

Mizuno Y, Cai W, Supekar K, Makita K, Takiguchi S, Silk TJ, et al. Methylphenidate enhances spontaneous fluctuations in reward and Cognitive Control Networks in Children with Attention-Deficit/Hyperactivity disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8(3):271–80. https://doi.org/10.1016/j.bpsc.2022.10.001. PubMed PMID: 36717325.

Article  PubMed  Google Scholar 

Henry TR, Fogleman ND, Nugiel T, Cohen JR. Effect of methylphenidate on functional controllability: a preliminary study in medication-naive children with ADHD. Transl Psychiatry. 2022;12(1):518. https://doi.org/10.1038/s41398-022-02283-4. PubMed PMID: 36528602; PubMed Central PMCID: PMCPMC9759578.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizuno Y, Cai W, Supekar K, Makita K, Takiguchi S, Tomoda A, et al. Methylphenidate remediates aberrant brain network dynamics in children with attention-deficit/hyperactivity disorder: a randomized controlled trial. NeuroImage. 2022;257:119332. https://doi.org/10.1016/j.neuroimage.2022.119332. PubMed PMID: 35640787; PubMed Central PMCID: PMCPMC9286726.

Article  PubMed  Google Scholar 

Silk TJ, Malpas C, Vance A, Bellgrove MA. The effect of single-dose methylphenidate on resting-state network functional connectivity in ADHD. Brain Imaging Behav. 2017;11(5):1422–31. https://doi.org/10.1007/s11682-016-9620-8. PubMed PMID: 27734305.

Article  PubMed  Google Scholar 

Yang Z, Kelly C, Castellanos FX, Leon T, Milham MP, Adler LA. Neural correlates of Symptom Improvement following stimulant treatment in adults with Attention-Deficit/Hyperactivity disorder. J Child Adolesc Psychopharmacol. 2016;26(6):527–36. https://doi.org/10.1089/cap.2015.0243. PubMed PMID: 27027541; PubMed Central PMCID: PMCPMC4991601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mueller S, Costa A, Keeser D, Pogarell O, Berman A, Coates U, et al. The effects of methylphenidate on whole brain intrinsic functional connectivity. Hum Brain Mapp. 2014;35(11):5379–88. https://doi.org/10.1002/hbm.22557. PubMed PMID: 24862742; PubMed Central PMCID: PMCPMC6869774.

Article  PubMed  PubMed Central  Google Scholar 

Sripada CS, Kessler D, Welsh R, Angstadt M, Liberzon I, Phan KL, et al. Distributed effects of methylphenidate on the network structure of the resting brain: a connectomic pattern classification analysis. NeuroImage. 2013;81:213–21. https://doi.org/10.1016/j.neuroimage.2013.05.016. PubMed PMID: 23684862; PubMed Central PMCID: PMCPMC3729859.

Article  PubMed  Google Scholar 

Campez M, Raiker JS, Little K, Altszuler AR, Merrill BM, Macphee FL, et al. An evaluation of the effect of methylphenidate on working memory, time perception, and choice impulsivity in children with ADHD. Exp Clin Psychopharmacol. 2022;30(2):209–19. https://doi.org/10.1037/pha0000446. PubMed PMID: 33475395; PubMed Central PMCID: PMCPMC8406432.

Article 

留言 (0)

沒有登入
gif