Sex-specific differences in the mechanisms for enhanced thromboxane A2-mediated vasoconstriction in adult offspring exposed to prenatal hypoxia

Mc Namara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019;8:1–11. https://doi.org/10.2147/IPRP.S133088.

Article  PubMed  PubMed Central  Google Scholar 

Teo KK, Rafiq T. Cardiovascular risk factors and prevention: a perspective from developing countries. Can J Cardiol. 2021;37(5):733–43. https://doi.org/10.1016/j.cjca.2021.02.009.

Article  PubMed  Google Scholar 

Hajar R. Framingham contribution to cardiovascular disease. Heart Views. 2016;17(2):78–81. https://doi.org/10.4103/1995-705X.185130.

Article  PubMed  PubMed Central  Google Scholar 

Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7. https://doi.org/10.1111/j.1365-2796.2007.01809.x.

Article  CAS  PubMed  Google Scholar 

Louey S, Thornburg KL. The prenatal environment and later cardiovascular disease. Early Hum Dev. 2005;81(9):745–51. https://doi.org/10.1016/j.earlhumdev.2005.07.001.

Article  PubMed  Google Scholar 

Rueda-Clausen CF, Morton JS, Davidge ST. The early origins of cardiovascular health and disease: who, when, and how. Semin Reprod Med. 2011;29(3):197–210. https://doi.org/10.1055/s-0031-1275520.

Article  PubMed  Google Scholar 

Aljunaidy MM, Morton JS, Cooke CM, Davidge ST. Prenatal hypoxia and placental oxidative stress: linkages to developmental origins of cardiovascular disease. Am J Physiol Regul Integr Comp Physiol. 2017;313(4):R395–9. https://doi.org/10.1152/ajpregu.00245.2017.

Article  CAS  PubMed  Google Scholar 

Yang C, Baker PN, Granger JP, Davidge ST, Tong C. Long-term impacts of preeclampsia on the cardiovascular system of mother and offspring. Hypertension. 2023;80(9):1821–33. https://doi.org/10.1161/HYPERTENSIONAHA.123.21061.

Article  CAS  PubMed  Google Scholar 

Bourque SL, Davidge ST. Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond). 2020;134(22):3023–46. https://doi.org/10.1042/CS20191210.

Article  CAS  PubMed  Google Scholar 

Lurbe E, Ingelfinger J. Developmental and early life origins of cardiometabolic risk factors: novel findings and implications. Hypertension. 2021;77(2):308–18. https://doi.org/10.1161/HYPERTENSIONAHA.120.14592.

Article  CAS  PubMed  Google Scholar 

Thornburg KL. The programming of cardiovascular disease. J Dev Orig Health Dis. 2015;6(5):366–76. https://doi.org/10.1017/S2040174415001300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hutter D, Kingdom J, Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr. 2010;2010: 401323. https://doi.org/10.1155/2010/401323.

Article  PubMed  PubMed Central  Google Scholar 

Silvestro S, Calcaterra V, Pelizzo G, Bramanti P, Mazzon E. Prenatal hypoxia and placental oxidative stress: insights from animal models to clinical evidences. Antioxidants (Basel). 2020;9:5. https://doi.org/10.3390/antiox9050414.

Article  CAS  Google Scholar 

Sutovska H, Babarikova K, Zeman M, Molcan L. Prenatal hypoxia affects foetal cardiovascular regulatory mechanisms in a sex- and circadian-dependent manner: a review. Int J Mol Sci. 2022;23:5. https://doi.org/10.3390/ijms23052885.

Article  CAS  Google Scholar 

Kingdom JC, Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia. Placenta. 1997;18(8):613–21; discussion 2-6. https://doi.org/10.1016/s0143-4004(97)90000-x.

Article  CAS  PubMed  Google Scholar 

Giussani DA, Davidge ST. Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis. 2013;4(5):328–37. https://doi.org/10.1017/S204017441300010X.

Article  CAS  PubMed  Google Scholar 

Hula N, Liu R, Spaans F, Pasha M, Quon A, Kirschenman R, et al. The long-term effects of prenatal hypoxia on coronary artery function of the male and female offspring. Biomedicines. 2022;10:12. https://doi.org/10.3390/biomedicines10123019.

Article  CAS  Google Scholar 

Williams SJ, Hemmings DG, Mitchell JM, McMillen IC, Davidge ST. Effects of maternal hypoxia or nutrient restriction during pregnancy on endothelial function in adult male rat offspring. J Physiol. 2005;565(Pt 1):125–35. https://doi.org/10.1113/jphysiol.2005.084889.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourque SL, Gragasin FS, Quon AL, Mansour Y, Morton JS, Davidge ST. Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male, but not female, offspring. Hypertension. 2013;62(4):753–8. https://doi.org/10.1161/HYPERTENSIONAHA.113.01516.

Article  CAS  PubMed  Google Scholar 

Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37, 37a–37d. https://doi.org/10.1093/eurheartj/ehr304.

Article  CAS  PubMed  Google Scholar 

Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–95. https://doi.org/10.1161/CIRCULATIONAHA.106.652859.

Article  PubMed  Google Scholar 

Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4:302–12. https://doi.org/10.2174/1874192401004010302.

Article  PubMed  PubMed Central  Google Scholar 

Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM. Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension. 2002;39(6):1088–94. https://doi.org/10.1161/01.hyp.0000018041.48432.b5.

Article  CAS  PubMed  Google Scholar 

Jin RC, Loscalzo J. Vascular nitric oxide: formation and function. J Blood Med. 2010;2010(1):147–62. https://doi.org/10.2147/JBM.S7000.

Article  CAS  PubMed  Google Scholar 

Sparks MA, Makhanova NA, Griffiths RC, Snouwaert JN, Koller BH, Coffman TM. Thromboxane receptors in smooth muscle promote hypertension, vascular remodeling, and sudden death. Hypertension. 2013;61(1):166–73. https://doi.org/10.1161/HYPERTENSIONAHA.112.193250.

Article  CAS  PubMed  Google Scholar 

Chen H. Role of thromboxane A. Prostagland Other Lipid Mediat. 2018;134:32–7. https://doi.org/10.1016/j.prostaglandins.2017.11.004.

Article  CAS  Google Scholar 

Hansell JA, Richter HG, Camm EJ, Herrera EA, Blanco CE, Villamor E, et al. Maternal melatonin: effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy. J Pineal Res. 2022;72(1): e12766. https://doi.org/10.1111/jpi.12766.

Article  CAS  PubMed  Google Scholar 

Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol. 2004;122(4):369–82. https://doi.org/10.1007/s00418-004-0677-x.

Article  CAS  PubMed  Google Scholar 

Aye ILMH, Aiken CE, Charnock-Jones DS, Smith GCS. Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S928–44. https://doi.org/10.1016/j.ajog.2020.11.005.

留言 (0)

沒有登入
gif