Mitochondria and cell death

White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Czabotar, P. E. & Garcia-Saez, A. J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol. 24, 732–748 (2023).

Article  CAS  PubMed  Google Scholar 

Subburaj, Y. et al. Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat. Commun. 6, 8042 (2015).

Article  CAS  PubMed  Google Scholar 

Dewson, G. et al. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death Differ. 19, 661–670 (2012).

Article  CAS  PubMed  Google Scholar 

Dewson, G. et al. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol. Cell 30, 369–380 (2008).

Article  CAS  PubMed  Google Scholar 

Czabotar, P. E. et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152, 519–531 (2013).

Article  CAS  PubMed  Google Scholar 

Vandenabeele, P., Bultynck, G. & Savvides, S. N. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat. Rev. Mol. Cell Biol. 24, 312–333 (2023).

Article  CAS  PubMed  Google Scholar 

Cowan, A. D. et al. BAK core dimers bind lipids and can be bridged by them. Nat. Struct. Mol. Biol. 27, 1024–1031 (2020).

Article  CAS  PubMed  Google Scholar 

Miller, M. S. et al. Sequence differences between BAX and BAK core domains manifest as differences in their interactions with lipids. FEBS J. https://doi.org/10.1111/febs.17031 (2023).

Article  Google Scholar 

Salvador-Gallego, R. et al. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J. 35, 389–401 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grosse, L. et al. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J. 35, 402–413 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cosentino, K. et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Mol. Cell 82, 933–949 e939 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

Article  PubMed  Google Scholar 

Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shalaby, R., Diwan, A., Flores-Romero, H., Hertlein, V. & Garcia-Saez, A. J. Visualization of BOK pores independent of BAX and BAK reveals a similar mechanism with differing regulation. Cell Death Differ. 30, 731–741 (2023).

Article  CAS  PubMed  Google Scholar 

Llambi, F. et al. BOK is a non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation. Cell 165, 421–433 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flores-Romero, H. et al. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J. 41, e108690 (2022).

Article  CAS  PubMed  Google Scholar 

Ke, F. S. et al. The BCL-2 family member BID plays a role during embryonic development in addition to its BH3-only protein function by acting in parallel to BAX, BAK and BOK. EMBO J. 41, e110300 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diepstraten, S. T. et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 22, 45–64 (2022).

Article  CAS  PubMed  Google Scholar 

Gitego, N. et al. Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis. Nat. Commun. 14, 8381 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, K., van Delft, M. F. & Dewson, G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. EMBO J. 40, e107341 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kale, J., Osterlund, E. J. & Andrews, D. W. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 25, 65–80 (2018).

Article  CAS  PubMed  Google Scholar 

Li, P. et al. SUMO modification in apoptosis. J. Mol. Histol. 52, 1–10 (2021).

Article  PubMed  Google Scholar 

Phu, L. et al. Dynamic regulation of mitochondrial import by the ubiquitin system. Mol. Cell 77, 1107–1123.e10 (2020).

Article  CAS  PubMed  Google Scholar 

Djajawi, T. M. et al. MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death Differ. 27, 2484–2499 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian, A., Andronache, A., Li, Y. C. & Wade, M. Inhibition of MARCH5 ubiquitin ligase abrogates MCL1-dependent resistance to BH3 mimetics via NOXA. Oncotarget 7, 15986–16002 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Haschka, M. D. et al. MARCH5-dependent degradation of MCL1/NOXA complexes defines susceptibility to antimitotic drug treatment. Cell Death Differ. 27, 2297–2312 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, A. S. et al. Mitochondrial E3 ubiquitin ligase MARCHF5 controls BAK apoptotic activity independently of BH3-only proteins. Cell Death Differ. 30, 632–646 (2023).

Article  CAS  PubMed  Google Scholar 

Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

留言 (0)

沒有登入
gif