H3K27 dimethylation dynamics reveal stepwise establishment of facultative heterochromatin in early mouse embryos

Aguirre-Lavin, T. et al. 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev. Biol. 12, 30 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Ahmed, K. et al. Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS ONE 5, e10531 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Probst, A., Santos, F., Reik, W., Almouzni, G. & Dean, W. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 116, 403–415 (2007).

Article  PubMed  Google Scholar 

Martin, C. et al. Genome restructuring in mouse embryos during reprogramming and early development. Dev. Biol. 292, 317–332 (2006).

Article  CAS  PubMed  Google Scholar 

Probst, A. et al. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 19, 625–638 (2010).

Article  CAS  PubMed  Google Scholar 

Burton, A. & Torres-Padilla, M. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 15, 723–735 (2014).

Article  CAS  PubMed  Google Scholar 

Tarkowski, A. K., Ozdzenski, W. & Czolowska, R. Identical triplets and twins developed from isolated blastomeres of 8- and 16-cell mouse embryos supported with tetraploid blastomeres. Int. J. Dev. Biol. 49, 825–832 (2005).

Article  PubMed  Google Scholar 

Li, L. et al. Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos. Nat. Struct. Mol. Biol. 31, 950–963 (2024).

Article  CAS  PubMed  Google Scholar 

Puschendorf, M. et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat. Genet. 40, 411–420 (2008).

Article  CAS  PubMed  Google Scholar 

Burton, A. et al. Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat. Cell Biol. 22, 767–778 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, C. et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat. Cell Biol. 20, 620–631 (2018).

Article  CAS  PubMed  Google Scholar 

Yang, H. et al. Allele-specific H3K9me3 and DNA methylation co-marked CpG-rich regions serve as potential imprinting control regions in pre-implantation embryo. Nat. Cell Biol. 24, 783–792 (2022).

Article  CAS  PubMed  Google Scholar 

Fadloun, A. et al. Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat. Struct. Mol. Biol. 20, 332–338 (2013).

Article  CAS  PubMed  Google Scholar 

Hatanaka, Y. et al. Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons. Proc. Natl Acad. Sci. USA 112, 14641–14646 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mochizuki, K. et al. Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nat. Commun. 12, 7020–7015 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066–1079 (2016).

Article  CAS  PubMed  Google Scholar 

Mei, H. et al. H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nat. Genet. 53, 539–550 (2021).

Article  CAS  PubMed  Google Scholar 

Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

Article  CAS  PubMed  Google Scholar 

Hojfeldt, J. W. et al. Non-core subunits of the PRC2 complex are collectively required for its target-site specificity. Mol. Cell 76, 423–436 e423 (2019).

Article  PubMed  Google Scholar 

Healy, E. et al. PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation. Mol. Cell 76, 437–452.e436 (2019).

Article  CAS  PubMed  Google Scholar 

Kim, J. J. & Kingston, R. E. Context-specific Polycomb mechanisms in development. Nat. Rev. Genet. 23, 680–695 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schuettengruber, B., Bourbon, H.-M., Di Croce, L. & Cavalli, G. Genome regulation by Polycomb and Trithorax: 70 years and counting. Cell 171, 34–57 (2017).

Article  CAS  PubMed  Google Scholar 

Blackledge, N. P. & Klose, R. J. The molecular principles of gene regulation by Polycomb repressive complexes. Nat. Rev. Mol. Cell Biol. 22, 815–833 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H. et al. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perino, M. et al. MTF2 recruits Polycomb repressive complex 2 by helical-shape-selective DNA binding. Nat. Genet. 50, 1002–1010 (2018).

Article  CAS  PubMed  Google Scholar 

Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010).

Article  CAS  PubMed  Google Scholar 

Shen, X. et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Kim, H., Kang, K. & Kim, J. AEBP2 as a potential targeting protein for Polycomb repression complex PRC2. Nucleic Acids Res. 37, 2940–2950 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper, S. et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat. Commun. 7, 1–8 (2016).

Article  Google Scholar 

Kalb, R. et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 21, 569–571 (2014).

Article  CAS  PubMed  Google Scholar 

Kasinath, V. et al. JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications. Science 371, eabc3393-3311 (2021).

Article 

留言 (0)

沒有登入
gif