Hydrogen Sulfide Ameliorates Heart Aging by Downregulating Matrix Metalloproteinase-9

Pagan L, Gomes M, Gatto M, et al. The role of oxidative stress in the aging heart. Antioxid. 2022;11(2):336. https://doi.org/10.3390/antiox11020336.

Chiao Y, Ramirez T, Zamilpa R, et al. Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovascular Res. 2012;96(3):444–55. https://doi.org/10.1093/cvr/cvs275.

Article  CAS  Google Scholar 

Lindsey M, Goshorn D, Squires C, et al. Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovascular Res. 2005;66(2):410–9. https://doi.org/10.1016/j.cardiores.2004.11.029.

Article  CAS  Google Scholar 

Kwak H. Aging, exercise, and extracellular matrix in the heart. J Exerc rehabilitation. 2013;9(3):338–47. https://doi.org/10.12965/jer.130049.

Article  Google Scholar 

Angelini A, Trial J, Ortiz-Urbina J, Cieslik K. Mechanosensing dysregulation in the fibroblast: a hallmark of the aging heart. Ageing Res Rev. 2020;63:101150. https://doi.org/10.1016/j.arr.2020.101150.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang Y, Xia J, Zheng J, et al. Deficiency of cartilage oligomeric matrix protein causes dilated cardiomyopathy. Basic Res Cardiol. 2013;108(5):374. https://doi.org/10.1007/s00395-013-0374-9.

Article  CAS  PubMed  Google Scholar 

Ackers-Johnson M, Tan W, Foo R. Following hearts, one cell at a time: recent applications of single-cell RNA sequencing to the understanding of heart disease. Nat Commun. 2018;9(1):4434. https://doi.org/10.1038/s41467-018-06894-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ringström N, Edling C, Nalesso G, Jeevaratnam K. Framing heartaches: the cardiac ECM and the effects of age. Int J Mol Sci. 2023;24(5):4713. https://doi.org/10.3390/ijms24054713.

Rabkin S. The role matrix metalloproteinases in the production of aortic aneurysm. Prog Mol Biol Transl Sci. 2017;147:239–65. https://doi.org/10.1016/bs.pmbts.2017.02.002.

Article  CAS  PubMed  Google Scholar 

Cui N, Hu M, Khalil R. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73. https://doi.org/10.1016/bs.pmbts.2017.02.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sternlicht M, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516. https://doi.org/10.1146/annurev.cellbio.17.1.463.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gottschall P, Deb S. Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation. 1996;3:69–75. https://doi.org/10.1159/000097229.

Article  CAS  PubMed  Google Scholar 

Bond M, Fabunmi R, Baker A, Newby A. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett. 1998;435(1):29–34. https://doi.org/10.1016/s0014-5793(98)01034-5.

Article  CAS  PubMed  Google Scholar 

Kolluru G, Shackelford R, Shen X, Dominic P, Kevil C. Sulfide regulation of cardiovascular function in health and disease. Nat reviews Cardiol. 2023;20(2):109–25. https://doi.org/10.1038/s41569-022-00741-6.

Article  CAS  Google Scholar 

Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev. 2023;103(1):31–276. https://doi.org/10.1152/physrev.00028.2021.

Article  CAS  PubMed  Google Scholar 

Perridon B, Leuvenink H, Hillebrands J, van Goor H, Bos E. The role of hydrogen sulfide in aging and age-related pathologies. Aging. 2016;8(10):2264–89. https://doi.org/10.18632/aging.101026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calabrese V, Scuto M, Salinaro A, et al. Hydrogen sulfide and carnosine: modulation of oxidative stress and inflammation in kidney and brain axis. Antioxid (Basel Switzerland). 2020;9(12):1303. https://doi.org/10.3390/antiox9121303.

Salloum F. Hydrogen sulfide and cardioprotection–mechanistic insights and clinical translatability. Pharmacol Ther. 2015;152:11–7. https://doi.org/10.1016/j.pharmthera.2015.04.004.

Article  CAS  PubMed  Google Scholar 

Hou C, Wang M, Sun C, et al. Protective effects of hydrogen sulfide in the ageing kidney. Oxidative Med Cell Longev. 2016;2016:7570489. https://doi.org/10.1155/2016/7570489.

Article  CAS  Google Scholar 

Srilatha B, Muthulakshmi P, Adaikan P, Moore P. Endogenous hydrogen sulfide insufficiency as a predictor of sexual dysfunction in aging rats. Aging Male. 2012;15(3):153–8. https://doi.org/10.3109/13685538.2012.668722.

Article  CAS  Google Scholar 

Zhu J, Wang Y, Rivett A, et al. Deficiency of cystathionine gamma-lyase promotes aortic elastolysis and medial degeneration in aged mice. J Mol Cell Cardiol. 2022;171:30–44. https://doi.org/10.1016/j.yjmcc.2022.06.011.

Article  CAS  PubMed  Google Scholar 

Tan B, Jin S, Sun J, et al. New method for quantification of gasotransmitter hydrogen sulfide in biological matrices by LC-MS/MS. Sci Rep. 2017;7:46278. https://doi.org/10.1038/srep46278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao L, Chen Z, Wang S, et al. NLRP3 inflammasome activation contributes to the pathogenesis of cardiocytes aging. Aging. 2021;13(16):20534–51. https://doi.org/10.18632/aging.203435.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borisov V, Forte E. Terminal oxidase cytochrome bd protects bacteria against hydrogen sulfide toxicity. Biochem Biokhimiia. 2021;86(1):22–32. https://doi.org/10.1134/s000629792101003x.

Article  CAS  Google Scholar 

Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16(3):1066–71. https://doi.org/10.1523/jneurosci.16-03-01066.1996.

Article  CAS  Google Scholar 

Malaeb H, Choucair I, Wang Z, et al. Stable isotope dilution mass spectrometry quantification of hydrogen sulfide and thiols in biological matrices. Redox Biol. 2022;55:102401. https://doi.org/10.1016/j.redox.2022.102401.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zivanovic J, Kouroussis E, Kohl J, et al. Selective persulfide detection reveals evolutionarily conserved antiaging effects of S-sulfhydration. Cell Metabol. 2019;30(6):1152-e7013. https://doi.org/10.1016/j.cmet.2019.10.007.

Article  CAS  Google Scholar 

Li Y, Liu M, Song X, et al. Exogenous hydrogen sulfide ameliorates diabetic myocardial fibrosis by inhibiting cell aging through SIRT6/AMPK autophagy. Front Pharmacol. 2020;11:1150. https://doi.org/10.3389/fphar.2020.01150.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan L, Liu X, Gong Q, Yang H, Zhu Y. Role of cystathionine γ-lyase/hydrogen sulfide pathway in cardiovascular disease: a novel therapeutic strategy? Antioxid Redox Signal. 2012;17(1):106–18. https://doi.org/10.1089/ars.2011.4349.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang G, Pei Y, Teng H, Cao Q, Wang R. Specificity protein-1 as a critical regulator of human cystathionine gamma-lyase in smooth muscle cells. J Biol Chem. 2011;286(30):26450–60. https://doi.org/10.1074/jbc.M111.266643.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif