Adropin promotes testicular functions by modulating redox homeostasis in adult mouse

I. Fridovich, Superoxide dismutases. An adaptation to a paramagnetic gas. J. Biol. Chem. 264(14), 7761–7764 (1989)

Article  CAS  PubMed  Google Scholar 

R. Brigelius-Flohé, M. Maiorino, Glutathione peroxidases. Biochimica et. Biophysica Acta 1830(5), 3289–3303 (2013). https://doi.org/10.1016/j.bbagen.2012.11.020

Article  CAS  PubMed  Google Scholar 

E. Niedzielska, I. Smaga, M. Gawlik, A. Moniczewski, P. Stankowicz, J. Pera, M. Filip, Oxidative stress in neurodegenerative diseases. Mol. Neurobiol. 53(6), 4094–4125 (2016). https://doi.org/10.1007/s12035-015-9337-5

Article  CAS  PubMed  Google Scholar 

G. Pizzino, N. Irrera, M. Cucinotta, G. Pallio, F. Mannino, V. Arcoraci, F. Squadrito, D. Altavilla, A. Bitto, Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 8416763 (2017). https://doi.org/10.1155/2017/8416763

Article  CAS  PubMed  PubMed Central  Google Scholar 

R.J. Aitken, M. Paterson, H. Fisher, D.W. Buckingham, M. van Duin, Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J. Cell Sci. 108(Pt 5), 2017–2025 (1995). https://doi.org/10.1242/jcs.108.5.2017

Article  CAS  PubMed  Google Scholar 

E. de Lamirande, C. Gagnon, A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int. J. Androl. 16(1), 21–25 (1993). https://doi.org/10.1111/j.1365-2605.1993.tb01148.x

Article  PubMed  Google Scholar 

S. Dutta, A. Majzoub, A. Agarwal, Oxidative stress and sperm function: A systematic review on evaluation and management. Arab J. Urol. 17(2), 87–97 (2019). https://doi.org/10.1080/2090598X.2019.1599624

Article  PubMed  PubMed Central  Google Scholar 

P. Sabeti, S. Pourmasumi, T. Rahiminia, F. Akyash, A.R. Talebi, Etiologies of sperm oxidative stress. Int. J. Reprod. Biomed. 14(4), 231–240 (2016)

CAS  PubMed  PubMed Central  Google Scholar 

T. Diemer, J.A. Allen, K.H. Hales, D.B. Hales, Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144(7), 2882–2891 (2003). https://doi.org/10.1210/en.2002-0090

Article  CAS  PubMed  Google Scholar 

L. Cao, S. Leers-Sucheta, S. Azhar, Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J. Steroid Biochem. Mol. Biol. 88(1), 61–67 (2004). https://doi.org/10.1016/j.jsbmb.2003.10.007

Article  CAS  PubMed  Google Scholar 

H. Chen, A.S. Pechenino, J. Liu, M.C. Beattie, T.R. Brown, B.R. Zirkin, Effect of glutathione depletion on Leydig cell steroidogenesis in young and old brown Norway rats. Endocrinology 149(5), 2612–2619 (2008). https://doi.org/10.1210/en.2007-1245

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Choubey, A. Ranjan, P.S. Bora, F. Baltazar, L.J. Martin, A. Krishna, Role of adiponectin as a modulator of testicular function during aging in mice. Biochimica et. Biophys Acta Mol. Basis Dis. 1865(2), 413–427 (2019). https://doi.org/10.1016/j.bbadis.2018.11.019

Article  CAS  Google Scholar 

A. Ranjan, M. Choubey, T. Yada, A. Krishna, Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. Gen. Comp. Endocrinol. 271, 49–60 (2019). https://doi.org/10.1016/j.ygcen.2018.10.022

Article  CAS  PubMed  Google Scholar 

K.G. Kumar, J.L. Trevaskis, D.D. Lam, G.M. Sutton, R.A. Koza, V.N. Chouljenko, K.G. Kousoulas, P.M. Rogers, R.A. Kesterson, M. Thearle, A.W. Ferrante Jr, R.L. Mynatt, T.P. Burris, J.Z. Dong, H.A. Halem, M.D. Culler, L.K. Heisler, J.M. Stephens, A.A. Butler, Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab. 8(6), 468–481 (2008). https://doi.org/10.1016/j.cmet.2008.10.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

A.A. Butler, J. Zhang, C.A. Price, J.R. Stevens, J.L. Graham, K.L. Stanhope, S. King, R.M. Krauss, A.A. Bremer, P.J. Havel, Low plasma adropin concentrations increase risks of weight gain and metabolic dysregulation in response to a high-sugar diet in male nonhuman primates. J. Biol. Chem. 294(25), 9706–9719 (2019). https://doi.org/10.1074/jbc.RA119.007528

Article  CAS  PubMed  PubMed Central  Google Scholar 

L.M. Stein, G.L. Yosten, W.K. Samson, Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19. Am. J. Physiol. Regulatory Integr. Comp. Physiol. 310(6), R476–R480 (2016). https://doi.org/10.1152/ajpregu.00511.2015

Article  Google Scholar 

D. Thapa, M.W. Stoner, M. Zhang, B. Xie, J.R. Manning, D. Guimaraes, S. Shiva, M.J. Jurczak, I. Scott, Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway. Redox Biol. 18(Sep 1), 25–32 (2018). https://doi.org/10.1152/ajpheart.00449.2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

B.A. Mushala, I. Scott, Adropin: a hepatokine modulator of vascular function and cardiac fuel metabolism. Am. J. Physiol.-Heart Circulatory Physiol. 320(1 Jan), H238–H244 (2021). https://doi.org/10.1016/j.bbamcr.2017.05.001

Article  CAS  Google Scholar 

A. Rao, D.R. Herr, G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. Biochimica et. Biophysica Acta (BBA)-Mol. Cell Res. 1864(7 Jul), 1318–1327 (2017). https://doi.org/10.1016/j.redox.2018.06.003

Article  CAS  Google Scholar 

I.I. Ali, C. D’Souza, J. Singh, E. Adeghate, Adropin’s role in energy homeostasis and metabolic disorders. Int. J. Mol. Sci. 23(15), 8318 (2022). https://doi.org/10.3390/ijms23158318

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Ganesh Kumar, J. Zhang, S. Gao, J. Rossi, O.P. McGuinness, H.H. Halem, M.D. Culler, R.L. Mynatt, A.A. Butler, Adropin deficiency is associated with increased adiposity and insulin resistance. Obes. (Silver Spring, Md.) 20(7), 1394–1402 (2012). https://doi.org/10.1038/oby.2012.31

Article  CAS  Google Scholar 

X. Chen, H. Xue, W. Fang, K. Chen, S. Chen, W. Yang, T. Shen, X. Chen, P. Zhang, W. Ling, Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf2 mediated antioxidant capacity. Redox Biol. 21, 101068 (2019). https://doi.org/10.1016/j.redox.2018.101068

Article  CAS  PubMed  Google Scholar 

Q. Ma, Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401–426 (2013). https://doi.org/10.1146/annurev-pharmtox-011112-140320

Article  CAS  PubMed  PubMed Central  Google Scholar 

H. Zhao, S. Eguchi, A. Alam, D. Ma, The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 312(2), L155–L162 (2017). https://doi.org/10.1152/ajplung.00449.2016

Article  PubMed  Google Scholar 

R. Zhang, M. Xu, Y. Wang, F. Xie, G. Zhang, X. Qin, Nrf2-a promising therapeutic target for defensing against oxidative stress in stroke. Mol. Neurobiol. 54(8), 6006–6017 (2017). https://doi.org/10.1007/s12035-016-0111-0

Article  CAS  PubMed  Google Scholar 

J.D. Wardyn, A.H. Ponsford, C.M. Sanderson, Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc. Trans. 43(4), 621–626 (2015). https://doi.org/10.1042/BST20150014

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.J. Morgan, Z.G. Liu, Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21(1), 103–115 (2011). https://doi.org/10.1038/cr.2010.178

Article  CAS 

留言 (0)

沒有登入
gif