Hsa_circ_0010023 promotes the development of papillary thyroid carcinoma by sponging miR-1250-5p

H. Sung, J. Ferlay, R.L. Siegel et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021)

PubMed  Google Scholar 

M.I. Abdullah, S.M. Junit, K.L. Ng et al. Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int. J. Med. Sci. 16(3), 450 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

R.M. Tuttle, A.S. Alzahrani, Risk stratification in differentiated thyroid cancer: from detection to final follow-up. J. Clin. Endocrinol. Metab. 104(9), 4087–4100 (2019)

Article  PubMed  PubMed Central  Google Scholar 

M. Schlumberger, S. Leboulleux, Current practice in patients with differentiated thyroid cancer.Nat. Rev. Endocrinol. 17(3), 176–188 (2021).

Article  CAS  PubMed  Google Scholar 

G. Grani, M.C. Zatelli, M. Alfò et al. Real-world performance of the American thyroid association risk estimates in predicting 1-year differentiated thyroid cancer outcomes: a prospective multicenter study of 2000 patients. Thyroid 31(2), 264–271 (2021)

Article  CAS  PubMed  Google Scholar 

R.I. Haddad, C. Nasr, L. Bischoff et al. NCCN guidelines insights: thyroid carcinoma, version 2.2018. J. Natl Compr. Cancer Netw. 16(12), 1429–1440 (2018)

Article  Google Scholar 

H. Yan, P. Bu, Noncoding RNA in cancer. Essays Biochem. 65(4), 625–639 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

N. Wang, Y. Yu, B. Xu et al. Pivotal prognostic and diagnostic role of the long non-coding RNA colon cancer-associated transcript 1 expression in human cancer. Mol. Med. Rep. 19(2), 771–782 (2019)

CAS  PubMed  Google Scholar 

S. Memczak, M. Jens, A. Elefsinioti et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441), 333–338 (2013)

Article  CAS  PubMed  Google Scholar 

S. Starke, I. Jost, O. Rossbach et al. Exon circularization requires canonical splice signals. Cell Rep. 10(1), 103–111 (2015)

Article  CAS  PubMed  Google Scholar 

K. Abdelmohsen, A.C. Panda, R. Munk et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14(3), 361–369 (2017)

Article  PubMed  PubMed Central  Google Scholar 

G. Visci, D. Tolomeo, A. Agostini et al. CircRNAs and fusion-circRNAs in cancer: new players in an old game. Cell. Signal. 75, 109747 (2020)

Article  CAS  PubMed  Google Scholar 

K.Y. Hsiao, Y.C. Lin, S.K. Gupta et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and Metastasis. Cancer Res. 77(9), 2339–2350 (2017)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Y. Shi, N. Fang, Y. Li et al. Circular RNA LPAR3 sponges microRNA‐198 to facilitate esophageal cancer migration, invasion, and metastasis. Cancer Sci. 111(8), 2824–2836 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Z. Liu, Y. Zhou, G. Liang et al. Circular RNA hsa_circ_001783 regulates breast cancer progression by sponging miR-200c-3p. Cell Death Dis. 10(2), 55 (2019)

Article  PubMed  PubMed Central  Google Scholar 

N. Van Der Steen, Y. Lyu et al. The circular RNA landscape of non-small cell lung cancer cells. Cancers 12(5), 1091 (2020)

Article  PubMed  Google Scholar 

C. Lv, W. Sun, J. Huang et al. Expression profiles of circular RNAs in human papillary thyroid carcinoma based on RNA deep sequencing. OncoTargets Ther. 14, 3821 (2021)

Article  Google Scholar 

S. Filetti, C. Durante, D. Hartl et al. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30(12), 1856–1883 (2019)

Article  CAS  PubMed  Google Scholar 

J. Kim, J.E. Gosnell, S.A. Roman, Geographic influences in the global rise of thyroid cancer.Nat. Rev. Endocrinol. 16(1), 17–29 (2020).

Article  PubMed  Google Scholar 

S.L. Asa, The current histologic classification of thyroid cancer.Endocrinol. Metab. Clin. 48(1), 1–22 (2019).

Article  Google Scholar 

X. Yao, Q. Zhang, Function and clinical significance of circular RNAs in thyroid cancer. Front. Mol. Biosci. 9, 925389 (2022)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Ye, H. Hou, M. Shen et al. Circular RNA circFOXM1 plays a role in papillary thyroid carcinoma by sponging miR-1179 and regulating HMGB1 expression. Mol. Therapy-Nucleic Acids 19, 741–750 (2020)

Article  CAS  Google Scholar 

L. Chen, C. Wang, H. Sun et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief. Bioinform. 22(2), 1706–1728 (2021)

Article  CAS  PubMed  Google Scholar 

C. Li, L. Zhu, L. Fu et al. CircRNA NRIP1 promotes papillary thyroid carcinoma progression by sponging mir-195-5p and modulating the P38 MAPK and JAK/STAT pathways. Diagn. Pathol. 16(1), 1–11 (2021)

Article  PubMed  PubMed Central  Google Scholar 

Y. Jiang, W. Liu, L. Jiang et al. CircLDLR promotes papillary thyroid carcinoma tumorigenicity by regulating miR-637/LMO4 axis. Dis. Markers 2021, 3977189 (2021)

Article  PubMed  PubMed Central  Google Scholar 

S. Sumei, K. Xiangyun, C. Fenrong et al. Hypermethylation of DHRS3 as a novel tumor suppressor involved in tumor growth and prognosis in gastric cancer. Front. Cell Dev. Biol. 9, 624871 (2021)

Article  PubMed  PubMed Central  Google Scholar 

S. Lou, H. Gao, H. Hong et al. Inhibition of retinoic acid receptor α phosphorylation represses the progression of triple-negative breast cancer by transactivating miR-3074-5p to target DHRS3. J. Exp. Clin. Cancer Res. 40(1), 1–15 (2021)

Article  Google Scholar 

X. Xu, J. Jing, Advances on circRNAs contribute to carcinogenesis and progression in papillary thyroid carcinoma. Front. Endocrinol. 11, 555243 (2021)

Article  Google Scholar 

M. Zhang, X. Bai, X. Zeng et al. circRNA-miRNA-mRNA in breast cancer. Clini. Chim. Acta 523, 120–130 (2021)

Article  CAS  Google Scholar 

L.L. Chen, L. Yang, Regulation of circRNA biogenesis. RNA Biol. 12(4), 381–388 (2015)

Article  PubMed  PubMed Central  Google Scholar 

L.Q. Zhai, X.X. Wang, C.X. Qu et al. A long noncoding RNA, ELFN1-AS1, sponges miR-1250 to upregulate MTA1 to promote cell proliferation, migration and invasion, and induce apoptosis in colorectal cancer. Eur. Rev. Med. Pharmacol. Sci. 25(14), 4655–4667 (2021)

PubMed  Google Scholar 

M. Drosten, M. Barbacid, Targeting the MAPK pathway in KRAS-driven tumors. Cancer Cell 37(4), 543–550 (2020)

Article  CAS  PubMed  Google Scholar 

S. Lee, J. Rauch, W. Kolch, Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci. 21(3), 1102 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Zhang, L. Wang, C. Chim, miR-1250-5p is a novel tumor suppressive intronic miRNA hypermethylated in nonHodgkins lymphoma: novel targets with impact on ERK signaling and cell migration. Cell Commun Signal. 19(1), 62 (2021)

留言 (0)

沒有登入
gif