The potential protective effect of Camellia Sinensis in mitigating monosodium glutamate-induced neurotoxicity: biochemical and histological study in male albino rats

Abd-Elkareem M, Abd El-Rahman MAM, Khalil NSA, Amer AS (2021) Antioxidant and cytoprotective effects of Nigella sativa L. seeds on the testis of monosodium glutamate challenged rats. Sci Rep 11(1):13519. https://doi.org/10.1038/S41598-021-92977-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aboulwafa MM, Youssef FS, Gad HA, Altyar AE, Al-Azizi MM, Ashour ML (2019) A comprehensive insight on the health benefits and phytoconstituents of Camellia sinensis and recent approaches for its quality control. Antioxidants 8(10):455. https://doi.org/10.3390/ANTIOX8100455

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abunofal O, Mohan C (2022) Salubrious effects of green tea catechins on fatty liver disease: a systematic review. Medicines 9(3):20. https://doi.org/10.3390/MEDICINES9030020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmed M (2016) Effect of some food additives consumption on the body weight and toxicity and the possible ameliorative role of green tea extract. Middle East J Appl Sci 6(4):716–730

Google Scholar 

Beyreuther K, Biesalski HK, Fernstrom JD, Grimm P, Hammes WP, Heinemann U, Kempski O, Stehle P, Steinhart H, Walker R (2007) Consensus meeting: monosodium glutamate - an update. Eur J Clin Nutr 61(3):304–313. https://doi.org/10.1038/SJ.EJCN.1602526

Article  CAS  PubMed  Google Scholar 

Biswas P, Hasan W, Jain J, Kori RK, Bose D, Yadav RS (2022) Non-permitted food colorants induced neurotoxicity in cerebellum of rat brain. Drug Chem Toxicol 45(6):2852–2859. https://doi.org/10.1080/01480545.2021.1997542

Article  CAS  PubMed  Google Scholar 

Boyina R, Dodoala S (2020) Evaluation of the neurobehavioural toxic effects of taurine, glucuronolactone, and gluconolactone used in energy drinks in young rats. Turkish J Pharm Sci 17(6):659. https://doi.org/10.4274/TJPS.GALENOS.2019.33602

Article  CAS  Google Scholar 

Chen SQ, Wang ZS, Ma YX, Zhang W, Lu JL, Liang YR, Zheng XQ (2018) Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Molecules 23(3):512. https://doi.org/10.3390/MOLECULES23030512

Article  PubMed  PubMed Central  Google Scholar 

Demeule M, Brossard M, Turcotte S, Regina A, Jodoin J, Béliveau R (2004) Diallyl disulfide, a chemopreventive agent in garlic, induces multidrug resistance-associated protein 2 expression. Biochem Biophys Res Commun 324(2):937–945. https://doi.org/10.1016/J.BBRC.2004.09.141

Article  CAS  PubMed  Google Scholar 

Dief AE, Kamha ES, Baraka AM, Elshorbagy AK (2014) Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase. Neurotoxicology 42:76–82. https://doi.org/10.1016/J.NEURO.2014.04.003

Article  CAS  PubMed  Google Scholar 

Done AJ, Traustadóttir T (2016) Nrf2 mediates redox adaptations to exercise. Redox Biol 10:191–199. https://doi.org/10.1016/J.REDOX.2016.10.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong X, Yang C, Cao S, Gan Y, Sun H, Gong Y, Yang H, Yin X, Lu Z (2015) Tea consumption and the risk of depression: a meta-analysis of observational studies. Aust N Z J Psychiatry 49(4):334–345. https://doi.org/10.1177/0004867414567759

Article  PubMed  Google Scholar 

Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671. https://doi.org/10.1016/S0301-0082(99)00060-X

Article  CAS  PubMed  Google Scholar 

Farombi EO, Onyema OO (2006) Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum Exp Toxicol 25(5):251–259. https://doi.org/10.1191/0960327106HT621OA

Article  CAS  PubMed  Google Scholar 

Freeman M (2006) Reconsidering the effects of monosodium glutamate: a literature review. J Am Acad Nurse Pract 18(10):482–486. https://doi.org/10.1111/J.1745-7599.2006.00160.X

Article  PubMed  Google Scholar 

Fujikawa DG (2005) Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav 7 Suppl 3(SUPPL. 3):3–11. https://doi.org/10.1016/J.YEBEH.2005.08.003

Article  Google Scholar 

Garattini S (2000) Glutamic acid, twenty years later. J Nutr 130(4S Suppl):901S–9S. https://doi.org/10.1093/JN/130.4.901S

Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29(11):1106–1114. https://doi.org/10.1016/S0891-5849(00)00394-4

Article  CAS  PubMed  Google Scholar 

Gruenbaum BF, Zlotnik A, Frenkel A, Fleidervish I, Boyko M (2022) Glutamate efflux across the blood–brain barrier: new perspectives on the relationship between depression and the glutamatergic system. Metabolites 12(5):459. https://doi.org/10.3390/METABO12050459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu S, Gao M, Yan Y, Wang F, Tang YY, Huang JH (2018) The neural mechanism underlying cognitive and emotional processes in creativity. Front Psychol 9:1924. https://doi.org/10.3389/FPSYG.2018.01924

Article  PubMed  PubMed Central  Google Scholar 

Gudiño-Cabrera G, Ureña-Guerrero ME, Rivera-Cervantes MC, Feria-Velasco AI, Beas-Zárate C (2014) Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function. Arch Med Res 45(8):653–659. https://doi.org/10.1016/J.ARCMED.2014.11.014

Article  PubMed  Google Scholar 

Hazzaa SM, Abdelaziz SAM, Eldaim MAA, Abdel-Daim MM, Elgarawany GE (2020) Neuroprotective potential of Allium sativum against monosodium glutamate-induced excitotoxicity: impact on short-term memory, gliosis, and oxidative stress. Nutrients 12(4):1028. https://doi.org/10.3390/NU12041028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang HT, Cheng TL, Lin SY, Ho CJ, Chyu JY, Yang R, Sen, Chen CH, Shen CL (2020) Osteoprotective roles of green tea catechins. Antioxid (Basel, Switzerland) 9(11):1–25. https://doi.org/10.3390/ANTIOX9111136

Article  Google Scholar 

Huang C, Chu JMT, Liu Y, Kwong VSW, Chang RCC, Wong GTC (2022) Sevoflurane induces neurotoxicity in the animal model with Alzheimer’s disease neuropathology via modulating glutamate transporter and neuronal apoptosis. Int J Mol Sci 23(11):6250. https://doi.org/10.3390/IJMS23116250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hussein UK, Hassan NEHY, Elhalwagy MEA, Zaki AR, Abubakr HO, Venkata N, Jang KC, K. Y., Bishayee A (2017) Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules: J Synth Chem Nat Prod Chem 22(11):1928. https://doi.org/10.3390/MOLECULES22111928

Article  Google Scholar 

Iuculano T, Padmanabhan A, Menon V (2018) Systems neuroscience of mathematical cognition and learning: basic organization and neural sources of heterogeneity in typical and atypical development. In: Heterogeneity of function in numerical cognition, pp 287–336. Academic Press. https://doi.org/10.1016/B978-0-12-811529-9.00015-7

Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267(16):4928–4944. https://doi.org/10.1046/J.1432-1327.2000.01601.X

Article  CAS  PubMed  Google Scholar 

Koshiishi I, Mamura Y, Liu J, Imanari T (1998) Evaluation of an acidic deproteinization for the measurement of ascorbate and dehydroascorbate in plasma samples. Clin Chem 44(4):863–868. https://doi.org/10.1093/clinchem/44.4.863

Article  CAS  PubMed  Google Scholar 

Lau K, McLean WG, Williams DP, Howard CV (2006) Synergistic interactions between commonly used food additives in a developmental neurotoxicity test. Toxicol Sci 90(1):178–187. https://doi.org/10.1093/TOXSCI/KFJ073

Article  CAS  PubMed  Google Scholar 

Li C, Lin J, Yang T, Shang H (2022) Green tea intake and Parkinson’s disease progression: a mendelian randomization study. Front Nutr 9:848223. https://doi.org/10.3389/FNUT.2022.848223/FULL

留言 (0)

沒有登入
gif