Motion-Accommodating Dual-Layer Hydrogel Dressing to Deliver Adipose-Derived Stem Cells to Wounds

Casado-Díaz A. Stem cells in regenerative medicine. J Clin Med. 2022;11:5460.

Article  PubMed  PubMed Central  Google Scholar 

Xia H, Li X, Gao W, Fu X, Fang RH, Zhang L, et al. Tissue repair and regeneration with endogenous stem cells. Nat Rev Mater. 2018;3:174–93.

Article  CAS  Google Scholar 

Kimbrel EA, Lanza R. Next-generation stem cells—ushering in a new era of cell-based therapies. Nat Rev Drug Discov. 2020;19:463–79.

Article  CAS  PubMed  Google Scholar 

Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi DS. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019;10:111.

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Wang M, Liang F, Li J. Recent strategies for enhancing the therapeutic efficacy of stem cells in wound healing. Stem Cell Res Ther. 2021;12:588.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lam MT, Nauta A, Meyer NP, Wu JC, Longaker MT. Effective delivery of stem cells using an extracellular matrix patch results in increased cell survival and proliferation and reduced scarring in skin wound healing. Tissue Eng Part A. 2013;19:738–47.

Article  CAS  PubMed  Google Scholar 

Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071.

Kosaric N, Kiwanuka H, Gurtner GC. Stem cell therapies for wound healing. Expert Opin Biol Ther. 2019;19:575–85.

Article  CAS  PubMed  Google Scholar 

Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8:217–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13:1299–312.

Article  CAS  PubMed  Google Scholar 

Kus KJB, Ruiz ES. Wound dressings—a practical review. Curr Dermatol Rep. 2020;9:298–308.

Article  Google Scholar 

Zhao Y, Li Z, Song S, Yang K, Liu H, Yang Z, et al. Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv Func Mater. 2019;29:1901474.

Article  Google Scholar 

Li M, Liang Y, Liang Y, Pan G, Guo B. Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of MRSA infected motion wounds. Chem Eng J. 2022;427:132039.

Article  CAS  Google Scholar 

Ma W, Ling S, Liu Y, Chen Z, Xu J. Bio-inspired low-cost fabrication of stretchable, adhesive, transparent, and multi-functionalized joint wound dressings. ACS Appl Mater Interfaces. 2023;15:22915–28.

Article  CAS  PubMed  Google Scholar 

Hodge JG, Zamierowski DS, Robinson JL, Mellott AJ. Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomater Res. 2022;26:50.

Article  PubMed  PubMed Central  Google Scholar 

Luneva O, Olekhnovich R, Uspenskaya M. Bilayer hydrogels for wound dressing and tissue engineering. Polymers (Basel). 2022;14:3135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, et al. Highly stretchable and tough hydrogels. Nature. 2012;489:133–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Illeperuma WRK, Suo Z, Vlassak JJ. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett. 2014;3:520–3.

Article  CAS  PubMed  Google Scholar 

Yuk H, Zhang T, Parada GA, Liu X, Zhao X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat Commun. 2016;7:12028.

Article  PubMed  PubMed Central  Google Scholar 

Schneider MH, Tran Y, Tabeling P. Benzophenone absorption and diffusion in poly(dimethylsiloxane) and its role in graft photo-polymerization for surface modification. Langmuir. 2011;27:1232–40.

Article  CAS  PubMed  Google Scholar 

Li J, Celiz AD, Yang J, Yang Q, Wamala I, Whyte W, et al. Tough adhesives for diverse wet surfaces. Science. 2017;357:378–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivlin RS, Thomas AG. Rupture of rubber. I. Characteristic energy for tearing. J Polym Sci. 1953;10:291–318.

Article  CAS  Google Scholar 

Lutz JB, Zehrer CL, Solfest SE, Walters SA. A new in vivo test method to compare wound dressing fluid handling characteristics and wear time. Ostomy Wound Manage. 2011;57:28–36.

PubMed  Google Scholar 

Wu P, Fisher AC, Foo PP, Queen D, Gaylor JD. In vitro assessment of water vapour transmission of synthetic wound dressings. Biomaterials. 1995;16:171–5.

Article  CAS  PubMed  Google Scholar 

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455–65.

Article  CAS  PubMed  Google Scholar 

Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallagher AJ, Ní Annaidh A, Bruyère K, Otténio M, Xie H, Gilchrist MD. Dynamic tensile properties of human skin. In: IRCOBI conference. Dublin (Ireland: International Research Council on the Biomechanics of Injury. 2012;59:494-502.

Kottner J, Lichterfeld A, Blume-Peytavi U. Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis. Arch Dermatol Res. 2013;305:315–23.

Article  PubMed  Google Scholar 

Abiakam NS, Jayabal H, Filingeri D, Bader DL, Worsley PR. Spatial and temporal changes in biophysical skin parameters over a category I pressure ulcer. Int Wound J. 2023;20:3164-76.

Lamke LO, Nilsson GE, Reithner HL. The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns. 1977;3:159–65.

Article  Google Scholar 

Dini V, Barbanera S, Romanelli M. Quantitative evaluation of maceration in venous leg ulcers by transepidermal water loss (TEWL) measurement. Int J Low Extrem Wounds. 2014;13:116–9.

Article  PubMed  Google Scholar 

Bainbridge P, Browning P, Bernatchez SF, Blaser C, Hitschmann G. Comparing test methods for moisture-vapor transmission rate (MVTR) for vascular access transparent semipermeable dressings. J Vasc Access. 2021;24:11297298211050485.

Zehrer CL, Holm D, Solfest SE, Walters SA. A comparison of the in vitro moisture vapour transmission rate and in vivo fluid-handling capacity of six adhesive foam dressings to a newly reformulated adhesive foam dressing. Int Wound J. 2014;11:681–90.

Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol. 2016;74:607–25.

Article  PubMed  Google Scholar 

Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 2011;20:205–16.

Article  PubMed  Google Scholar 

Hong SJ, Jia SX, Xie P, Xu W, Leung KP, Mustoe TA, et al. Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS One. 2013;8:e55640.

留言 (0)

沒有登入
gif