Sex-dependent effects of carbohydrate source and quantity on caspase-1 activity in the mouse central nervous system

Shin J-H. Dementia epidemiology fact sheet 2022. Ann Rehabil Med. 2022;46(2):53–9.

Article  PubMed  PubMed Central  Google Scholar 

Silva MVF, et al. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26(1):33.

Article  PubMed  PubMed Central  Google Scholar 

Sheppard O, Coleman M. Alzheimer’s disease: etiology, neuropathology and pathogenesis. Brisbane: Exon Publications; 2020. p. 1–22.

Google Scholar 

Zhang C. Etiology of Alzheimer’s disease. Discov Med. 2023;35(178):757.

Article  PubMed  Google Scholar 

Javaid SF, et al. Epidemiology of Alzheimer’s disease and other dementias: rising global burden and forecasted trends. F1000Research. 2021;10:425.

Article  Google Scholar 

Arvanitakis Z, et al. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61(5):661.

Article  PubMed  Google Scholar 

Bellia C, et al. Diabetes and cognitive decline. Adv Clin Chem. 2022;108:37–71.

Article  CAS  PubMed  Google Scholar 

Ninomiya T. Diabetes mellitus and dementia. Curr Diab Rep. 2014;14(5):487.

Article  PubMed  Google Scholar 

Xue M, et al. Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55: 100944.

Article  CAS  PubMed  Google Scholar 

Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591–604.

Article  PubMed  PubMed Central  Google Scholar 

Savelieff MG, et al. Diabetes and dementia: clinical perspective, innovation, knowledge gaps. J Diabetes Complicat. 2022;36(11): 108333.

Article  CAS  Google Scholar 

Mohanty P, et al. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab. 2000;85(8):2970–3.

Article  CAS  PubMed  Google Scholar 

Aljada A, et al. Glucose ingestion induces an increase in intranuclear nuclear factor kappaB, a fall in cellular inhibitor kappaB, and an increase in tumor necrosis factor alpha messenger RNA by mononuclear cells in healthy human subjects. Metabolism. 2006;55(9):1177–85.

Article  CAS  PubMed  Google Scholar 

Esposito K, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans. Circulation. 2002;106(16):2067–72.

Article  CAS  PubMed  Google Scholar 

Chiazza F, et al. Targeting the NLRP3 inflammasome to reduce diet-induced metabolic abnormalities in mice. Mol Med. 2015;21(1):1025–37.

Article  CAS  Google Scholar 

Litwiniuk A, et al. Inflammasome NLRP3 potentially links obesity-associated low-grade systemic inflammation and insulin resistance with Alzheimer’s disease. Int J Mol Sci. 2021;22(11):5603.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinon F, Burns K, Tschopp J. The inflammasome. Mol Cell. 2002;10(2):417–26.

Article  CAS  PubMed  Google Scholar 

Milner MT, et al. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr Opin Immunol. 2021;68:116–24.

Article  CAS  PubMed  Google Scholar 

Singh J, Habean ML, Panicker N. Inflammasome assembly in neurodegenerative diseases. Trends Neurosci. 2023;46(10):814–31.

Article  CAS  PubMed  Google Scholar 

Wani K, et al. Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders. Int J Environ Res Public Health. 2021;18(2):511.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20.

Article  CAS  PubMed  Google Scholar 

Lu A, Wu H. Structural mechanisms of inflammasome assembly. FEBS J. 2015;282(3):435–44.

Article  CAS  PubMed  Google Scholar 

Vijay AK, Katherine KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165(4):792–800.

Article  Google Scholar 

De Zoete MR, et al. Inflammasomes. Cold Spring Harb Perspect Biol. 2014;6(12):a016287–a016287.

Article  PubMed  PubMed Central  Google Scholar 

Bulté D, et al. Inflammasomes: mechanisms of action and involvement in human diseases. Cells. 2023;12(13):1766.

Article  PubMed  PubMed Central  Google Scholar 

Yan Y, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38(6):1154–63.

Article  CAS  PubMed  Google Scholar 

Lin C, et al. Omega-3 fatty acids regulate NLRP3 inflammasome activation and prevent behavior deficits after traumatic brain injury. Exp Neurol. 2017;290:115–22.

Article  CAS  PubMed  Google Scholar 

Christ A, et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell. 2018;172(1–2):162-175.e14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, et al. Chronic high-fat diet induces galectin-3 and TLR4 to activate NLRP3 inflammasome in NASH. J Nutr Biochem. 2023;112: 109217.

Article  CAS  PubMed  Google Scholar 

Han D, et al. Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation. Cell Death Dis. 2023;14(10):656.

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Casares N, et al. Alzheimer’s disease, mild cognitive impairment and Mediterranean Diet. A systematic review and dose-response meta-analysis. J Clin Med. 2021;10(20):4642.

Article  PubMed  PubMed Central  Google Scholar 

Takeuchi H, Kawashima R. Diet and dementia: a prospective study. Nutrients. 2021;13(12):4500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong A, Dogra VR, Reichelt AC. High-sucrose diets in male rats disrupt aspects of decision making tasks, motivation and spatial memory, but not impulsivity measured by operant delay-discounting. Behav Brain Res. 2017;327:144–54.

Article  CAS  PubMed  Google Scholar 

Yeh SH-H, et al. A high-sucrose diet aggravates Alzheimer’s disease pathology, attenuates hypo

留言 (0)

沒有登入
gif