Blood-based therapies to combat neurodegenerative diseases

Abouna GM (2003) Ethical issues in organ transplantation. Med Princ Pract 12:54–69. https://doi.org/10.1159/000068158

Article  PubMed  Google Scholar 

Abuqayyas L, Balthasar JP (2013) Investigation of the role of FcγR and FcRn in mAb distribution to the brain. Mol Pharm 10:1505–1513. https://doi.org/10.1021/MP300214K

Article  CAS  PubMed  Google Scholar 

Alecou T, Giannakou M, Damianou C (2017) Amyloid β plaque reduction with antibodies crossing the blood-brain barrier, which was opened in 3 sessions of focused ultrasound in a rabbit model. J Ultrasound Med 36:2257–2270. https://doi.org/10.1002/JUM.14256

Article  PubMed  Google Scholar 

Arumugham VB, Rayi A (2022) Intravenous Immunoglobulin (IVIG). In: StatPearls. StatPearls Publishing, Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK554446/

Bacskai BJ, Kajdasz ST, McLellan ME et al (2002) Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci 22:7873–7878. https://doi.org/10.1523/JNEUROSCI.22-18-07873.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baht GS, Silkstone D, Vi L et al (2015) Exposure to a youthful circulaton rejuvenates bone repair through modulation of β-catenin. Nat Commun 6:7131. https://doi.org/10.1038/NCOMMS8131

Article  CAS  PubMed  Google Scholar 

Bai Z, Chen D, Wang L et al (2019) Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: a systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front Neurosci 13:481108. https://doi.org/10.3389/fnins.2019.01026

Article  Google Scholar 

Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919. https://doi.org/10.1038/78682

Article  CAS  PubMed  Google Scholar 

Boada M, Anaya F, Ortiz P et al (2017) Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-β concentrations and cognition outcomes in alzheimer’s disease patients: a multicenter, randomized, controlled clinical trial. J Alzheimer’s Dis 56:129–143. https://doi.org/10.3233/JAD-160565

Article  CAS  Google Scholar 

Boada M, López O, Núñez L et al (2019) Plasma exchange for Alzheimer’s disease Management by Albumin Replacement (AMBAR) trial: study design and progress. Alzheimers Dement (N Y) 5:61–69. https://doi.org/10.1016/J.TRCI.2019.01.001

Article  PubMed  Google Scholar 

Bobati SS, Naik KR (2017) Therapeutic plasma exchange - an emerging treatment modality in patients with neurologic and non-neurologic diseases. J Clin Diagn Res 11:EC35–EC37. https://doi.org/10.7860/JCDR/2017/27073.10480

Bochner DN, Sapp RW, Adelson JD,et al (2014) Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia. Sci Transl Med 6:258ra140. https://doi.org/10.1126/SCITRANSLMED.3010157

Brann DW, Dhandapani K, Wakade C et al (2007) Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72:381–405. https://doi.org/10.1016/J.STEROIDS.2007.02.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess A, Shah K, Hough O, Hynynen K (2015) Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother 15:477–491. https://doi.org/10.1586/14737175.2015.1028369

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cacabelos R (2020) How plausible is an Alzheimer’s disease vaccine? Expert Opin Drug Discov 15:1–6. https://doi.org/10.1080/17460441.2019.1667329

Article  CAS  PubMed  Google Scholar 

Castellano JM (2019) Blood-based therapies to combat aging. Gerontology 65:84–89. https://doi.org/10.1159/000492573

Article  PubMed  Google Scholar 

Castellano JM, Kirby ED, Wyss-Coray T (2015) Blood-borne revitalization of the aged brain. JAMA Neurol 72:1191–1194. https://doi.org/10.1001/JAMANEUROL.2015.1616

Article  PubMed  PubMed Central  Google Scholar 

Castellano JM, Mosher KI, Abbey RJ et al (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544:488–492. https://doi.org/10.1038/NATURE22067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerri S, Mus L, Blandini F (2019) Parkinson’s Disease in women and men: What’s the difference? J Parkinsons Dis 9:501–515. https://doi.org/10.3233/JPD-191683

Article  PubMed  PubMed Central  Google Scholar 

CH van D, CJ S, P A, et al (2023) Lecanemab in early Alzheimer’s Disease. N Engl J Med 388:142–143.https://doi.org/10.1056/NEJMOA2212948

Chen MJ, Ramesha S, Weinstock LD et al (2021) Extracellular signal-regulated kinase regulates microglial immune responses in Alzheimer’s disease. J Neurosci Res 99:1704–1721. https://doi.org/10.1002/JNR.24829

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen N, Wang W, Fauty S et al (2014) The effect of the neonatal Fc receptor on human IgG biodistribution in mice. Mabs 6:502–508. https://doi.org/10.4161/MABS.27765

Article  PubMed  PubMed Central  Google Scholar 

Chen R, Ende N (2000) The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J Med 31:21–30

CAS  PubMed  Google Scholar 

Cohen S, Cummings J, Knox S et al (2022) Clinical trial endpoints and their clinical meaningfulness in early stages of Alzheimer’s Disease. J Prev Alzheimers Dis 9:507. https://doi.org/10.14283/JPAD.2022.41

Coleman DL, Hummel KP (1969) Effects of parabiosis of normal with genetically diabetic mice. Am J Physiol 217:1298–1304. https://doi.org/10.1152/AJPLEGACY.1969.217.5.1298

Article  CAS  PubMed  Google Scholar 

Conboy IM, Conboy MJ, Wagers AJ et al (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764. https://doi.org/10.1038/NATURE03260

Article  CAS  PubMed  Google Scholar 

Conboy MJ, Conboy IM, Rando TA (2013) Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell 12:525–530. https://doi.org/10.1111/ACEL.12065

Article  CAS  PubMed  Google Scholar 

Conese M, Carbone A, Beccia E, Angiolillo A (2017) The fountain of youth: a tale of parabiosis, stem cells, and rejuvenation. Open Medicine 12:376–383. https://doi.org/10.1515/MED-2017-0053

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper PR, Ciambrone GJ, Kliwinski CM et al (2013) Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res 1534:13–21. https://doi.org/10.1016/J.BRAINRES.2013.08.035

Article  CAS  PubMed  Google Scholar 

Counts SE, Perez SE, He B, Mufson EJ (2014a) Intravenous immunoglobulin reduces Tau pathology and preserves neuroplastic gene expression in the 3xTg mouse model of Alzheimer’s Disease. Curr Alzheimer Res 11:655–663. https://doi.org/10.2174/1567205011666140812114037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Counts SE, Ray B, Mufson EJ et al (2014b) Intravenous Immunoglobulin (IVIG) treatment exerts antioxidant and neuropreservatory effects in preclinical models of Alzheimer’s disease. J Clin Immunol 34:80–85. https://doi.org/10.1007/S10875-014-0020-9

Article  CAS  Google Scholar 

Cummings J, Apostolova L, Rabinovici GD et al (2023) Lecanemab: appropriate use recommendations. J Prev Alzheimers Dis 10:362–377. https://doi.org/10.14283/JPAD.2023.30

Darlington D, Deng J, Giunta B et al (2013) Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-β-associated neuropathology in Alzheimer mice. Stem Cells Dev 22:412–421. https://doi.org/10.1089/SCD.2012.0345

Article  CAS  PubMed  Google Scholar 

Deane R, Sagare A, Hamm K et al (2005) IgG-assisted age-dependent clearance of Alzheimer’s amyloid β peptide by the blood-brain barrier neonatal Fc receptor. J Neurosci 25:11495–11503. https://doi.org/10.1523/JNEUROSCI.3697-05.2005

Article  CAS 

留言 (0)

沒有登入
gif