High efficacy of huCD20-targeted AcTaferon in humanized patient derived xenograft models of aggressive B cell lymphoma

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.

PubMed  Google Scholar 

Cai W, Zeng Q, Zhang X, Ruan W. Trends analysis of Non-Hodgkin lymphoma at the national, regional, and global level, 1990–2019: results from the global burden of disease study 2019. Front Med. 2021;8:738693.

Google Scholar 

Cheon H, Wang Y, Wightman SM, Jackson MW, Stark GR. How cancer cells make and respond to interferon-I. Trends Cancer. 2023;9(1):83–92.

CAS  PubMed  Google Scholar 

Zhang L, Tai Y-T, Ho MZG, Qiu L, Anderson KC. Interferon-alpha-based immunotherapies in the treatment of B cell-derived hematologic neoplasms in today’s treat-to-target era. Exp Hematol Oncol. 2017;6(1):20.

PubMed  PubMed Central  Google Scholar 

Berraondo P, Sanmamed MF, Ochoa MC, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6.

CAS  PubMed  Google Scholar 

Pasche N, Neri D. Immunocytokines: a novel class of potent armed antibodies. Drug Discov Today. 2012;17(11):583–90.

CAS  PubMed  Google Scholar 

Gout DY, Groen LS, van Egmond M. The present and future of immunocytokines for cancer treatment. Cell Mol Life Sci. 2022;79(10):509.

CAS  PubMed  Google Scholar 

Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing immunocytokines for cancer therapy. Antibodies. 2021;10(1):10.

CAS  PubMed  PubMed Central  Google Scholar 

Xue D, Hsu E, Fu Y-X, Peng H. Next-generation cytokines for cancer immunotherapy. Antib Ther. 2021;4(2):123–33.

CAS  PubMed  PubMed Central  Google Scholar 

Fu Y, Tang R, Zhao X. Engineering cytokines for cancer immunotherapy: a systematic review. Front Immunol. 2023;14:1218082.

CAS  PubMed  PubMed Central  Google Scholar 

Pabani A, Gainor JF. Facts and hopes: immunocytokines for cancer immunotherapy. Clin Cancer Res. 2023;29(19):3841–9.

CAS  PubMed  Google Scholar 

Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.

CAS  PubMed  Google Scholar 

Garcin G, Paul F, Staufenbiel M, et al. High efficiency cell-specific targeting of cytokine activity. Nat Commun. 2014;5:3016.

PubMed  Google Scholar 

Huyghe L, Van Parys A, Cauwels A, et al. Safe eradication of large established tumors using neovasculature-targeted tumor necrosis factor-based therapies. EMBO Mol Med. 2020;12(2): e11223.

CAS  PubMed  PubMed Central  Google Scholar 

Cauwels A, Van Lint S, Garcin G, et al. A safe and highly efficient tumor-targeted type I interferon immunotherapy depends on the tumor microenvironment. Oncoimmunology. 2018;7(3): e1398876.

PubMed  Google Scholar 

Tzeng A, Kwan BH, Opel CF, Navaratna T, Wittrup KD. Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution. Proc Natl Acad Sci. 2015;112:201416159.

Google Scholar 

Cauwels A, Van Lint S, Paul F, et al. Delivering type I interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res. 2018;78(2):463–74.

CAS  PubMed  Google Scholar 

Eeckhout BVD, Huyghe L, Lint SV, et al. Selective IL-1 activity on CD8+ T cells empowers antitumor immunity and synergizes with neovasculature-targeted TNF for full tumor eradication. J Immunother Cancer. 2021;9(11): e003293.

PubMed  Google Scholar 

Goossens S, Cauwels A, Pieters T, et al. Direct and indirect anti-leukemic properties of Activity-on-Target interferons for the treatment of T-cell acute lymphoblastic leukemia. Haematologica. 2020;107:1448.

Google Scholar 

Van Lint S, Van Parys A, Van Den Eeckhout B, et al. A bispecific Clec9A-PD-L1 targeted type I interferon profoundly reshapes the tumor microenvironment towards an antitumor state. Mol Cancer. 2023;22(1):191.

PubMed  PubMed Central  Google Scholar 

Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica. 2020;105(6):1494–506.

CAS  PubMed  PubMed Central  Google Scholar 

Luo C, Wu G, Huang X, et al. Efficacy and safety of new anti-CD20 monoclonal antibodies versus rituximab for induction therapy of CD20+ B-cell non-Hodgkin lymphomas: a systematic review and meta-analysis. Sci Rep. 2021;11(1):3255.

CAS  PubMed  PubMed Central  Google Scholar 

Chuprin J, Buettner H, Seedhom MO, et al. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol. 2023;20:1–15.

Google Scholar 

De La Rochere P, Guil-Luna S, Decaudin D, et al. Humanized mice for the study of immuno-oncology. Trends Immunol. 2018;39(9):748–63.

PubMed  Google Scholar 

Woo XY, Giordano J, Srivastava A, et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat Genet. 2021;53(1):86–99.

CAS  PubMed  PubMed Central  Google Scholar 

Lai Y, Wei X, Lin S, et al. Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol. 2017;10:1–4.

Google Scholar 

Martinov T, McKenna KM, Tan WH, et al. Building the next generation of humanized hemato-lymphoid system mice. Front Immunol. 2021;12:346.

Google Scholar 

Ehx G, Somja J, Warnatz H-J, et al. Xenogeneic graft-versus-host disease in humanized NSG and NSG-HLA-A2/HHD mice. Front Immunol. 2018;9:1943.

PubMed  PubMed Central  Google Scholar 

Hannon M, Lechanteur C, Lucas S, et al. Infusion of clinical-grade enriched regulatory T cells delays experimental xenogeneic graft-versus-host disease. Transfusion. 2014;54(2):353–63.

CAS  PubMed  Google Scholar 

Brehm MA, Cuthbert A, Yang C, et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol Orlando Fla. 2010;135(1):84–98.

CAS  Google Scholar 

Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–14.

CAS  PubMed  PubMed Central  Google Scholar 

PDCM Finder–Cancer Model: Center for Patient Derived Models, Dana-Farber Cancer Institute–DFBL-98848-V3-mCLP–Mantle Cell Lymphoma–Details.

GmbH EBB. Experimental Pharmacology & Oncology Berlin-Buch GmbH. EPO Berl Buch GmbH. 2022.

Kley N, Depla E, Zabeau L, Tavernier J. Bi-functional proteins and construction thereof. 2021.

Liu H, Saxena A, Sidhu SS, Wu D. Fc engineering for developing therapeutic bispecific antibodies and novel scaffolds. Front Immunol. 2017;8:227774.

Google Scholar 

Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-engineering for modulated effector functions—improving antibodies for cancer treatment. Antibodies. 2020;9(4):64.

PubMed  PubMed Central  Google Scholar 

Schlothauer T, Herter S, Koller CF, et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016;29(10):457–66.

CAS  PubMed  Google Scholar 

Saunders KO. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front Immunol. 2019;10:449325.

Google Scholar 

Piehler J, Roisman LC, Schreiber G. New structural and functional aspects of the type I interferon-receptor interaction revealed by comprehensive mutational analysis of the binding interface*. J Biol Chem. 2000;275(51):40425–33.

CAS  PubMed  Google Scholar 

Akabayov SR, Biron Z, Lamken P, Piehler J, Anglister J. NMR Mapping of the IFNAR1-EC binding site on IFNα2 reveals allosteric changes in the IFNAR2-EC binding site. Biochemistry. 2010;49(4):687–95.

CAS  PubMed  Google Scholar 

Stark GR, Darnell JE. The JAK-STAT pathway at twenty. Immunity. 2012;36(4):503–14.

CAS  PubMed  PubMed Central  Google Scholar 

Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375–86.

CAS  PubMed  Google Scholar 

Martins JP, Kennedy PJ, Santos HA, Barrias C, Sarmento B. A comprehensive review of the neonatal Fc receptor and its application in drug delivery. Pharmacol Ther. 2016;161:22–39.

CAS  PubMed  Google Scholar 

Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9(1):15–32.

CAS  PubMed  Google Scholar 

Cueto FJ, Sancho D. The Flt3L/Flt3 axis in dendritic cell biology and cancer immunotherapy. Cancers. 2021;13(7):1525.

CAS  PubMed  PubMed Central  Google Scholar 

Ding Y, Wilkinson A, Idris A, et al. FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo. J Immunol. 2014;192(4):1982–9.

CAS  PubMed  Google Scholar 

Anselmi G, Helft J, Guermonprez P. Development and function of human dendritic cells in humanized mice models. Mol Immunol. 2020;125:151–61.

CAS  PubMed  Google Scholar 

Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: emerging roles of DC crosstalk in cancer immunity. Front Immunol. 2019;10:1014.

CAS  PubMed  PubMed Central  Google Scholar 

Kley N, Depla E, Zabeau L, Tavernier J. Clec9a-based chimeric protein complexes. 2020.

Sancho D, Mourão-Sá D, Joffre OP, et al. Tumor therapy in mice via antigen targeting to a novel DC-restricted C-type lectin. J Clin Invest. 2008;118(6):2098–110.

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif