Feedback loop between hypoxia and energy metabolic reprogramming aggravates the radioresistance of cancer cells

Shaked Y. The pro-tumorigenic host response to cancer therapies. Nat Rev Cancer. 2019;19(12):667–85.

Article  CAS  PubMed  Google Scholar 

Herrera FG, Bourhis J, Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin. 2017;67(1):65–85.

Article  PubMed  Google Scholar 

Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy. Theranostics. 2019;9(5):1215–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Sun C, Tan Y, Zhang H, Li Y, Zou H. ITGB1 enhances the Radioresistance of human non-small cell Lung Cancer cells by modulating the DNA damage response and YAP1-induced epithelial-mesenchymal transition. Int J Biol Sci. 2021;17(2):635–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai X, Ni J, Beretov J, Wang S, Dong X, Graham P, et al. THOC2 and THOC5 regulate stemness and Radioresistance in Triple-negative breast Cancer. Adv Sci (Weinh). 2021;8(24):e2102658.

Article  PubMed  Google Scholar 

Kutilin D. Genetic and epigenetic bases of prostate tumor cell radioresistance. Klin Onkol. 2021;34(3):220–34.

PubMed  Google Scholar 

Peitzsch C, Cojoc M, Hein L, Kurth I, Mäbert K, Trautmann F, et al. An epigenetic reprogramming strategy to Resensitize Radioresistant prostate Cancer cells. Cancer Res. 2016;76(9):2637–51.

Article  CAS  PubMed  Google Scholar 

Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20(4):409–26.

Article  CAS  PubMed  Google Scholar 

Kabakov AE, Yakimova AO. Hypoxia-Induced Cancer cell responses driving Radioresistance of Hypoxic tumors: approaches to Targeting and Radiosensitizing. Cancers (Basel). 2021;13(5).

Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 2008;8(6):425–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26(312):638–48.

Article  CAS  PubMed  Google Scholar 

Howard-Flanders P, Moore D. The time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen. I. A search for an effect of oxygen 0.02 second after pulsed irradiation. Radiat Res. 1958;9(4):422–37.

Article  CAS  PubMed  Google Scholar 

Zhong J, Rajaram N, Brizel DM, Frees AE, Ramanujam N, Batinic-Haberle I, et al. Radiation induces aerobic glycolysis through reactive oxygen species. Radiother Oncol. 2013;106(3):390–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng H, Wang J, Chen W, Shan B, Guo Y, Xu J, et al. Hypoxia-induced autophagy as an additional mechanism in human osteosarcoma radioresistance. J Bone Oncol. 2016;5(2):67–73.

Article  PubMed  PubMed Central  Google Scholar 

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finley LWS. What is cancer metabolism? Cell. 2023.

Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

Article  CAS  PubMed  Google Scholar 

Shi Y, Wang Y, Jiang H, Sun X, Xu H, Wei X, et al. Mitochondrial dysfunction induces radioresistance in colorectal cancer by activating [Ca(2+)](m)-PDP1-PDH-histone acetylation retrograde signaling. Cell Death Dis. 2021;12(9):837.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.

Article  PubMed  Google Scholar 

Zhang W, Li L, Guo E, Zhou H, Ming J, Sun L, et al. Inhibition of PDK1 enhances radiosensitivity and reverses epithelial-mesenchymal transition in nasopharyngeal carcinoma. Head Neck. 2022;44(7):1576–87.

Article  PubMed  Google Scholar 

Bamodu OA, Chang HL, Ong JR, Lee WH, Yeh CT, Tsai JT. Elevated PDK1 expression drives PI3K/AKT/MTOR signaling promotes Radiation-resistant and dedifferentiated phenotype of Hepatocellular Carcinoma. Cells. 2020;9(3).

Nakashima R, Goto Y, Koyasu S, Kobayashi M, Morinibu A, Yoshimura M, et al. UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization. Sci Rep. 2017;7(1):6879.

Article  PubMed  PubMed Central  Google Scholar 

Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezène P, et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2013;110(10):3919–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busk M, Walenta S, Mueller-Klieser W, Steiniche T, Jakobsen S, Horsman MR, et al. Inhibition of tumor lactate oxidation: consequences for the tumor microenvironment. Radiother Oncol. 2011;99(3):404–11.

Article  CAS  PubMed  Google Scholar 

Li Y, Zhao L, Li XF. Hypoxia and the Tumor Microenvironment. Technol Cancer Res Treat. 2021;20:15330338211036304.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.

Article  CAS  PubMed  Google Scholar 

Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001;21(10):3436–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shigeta K, Hasegawa M, Hishiki T, Naito Y, Baba Y, Mikami S, et al. IDH2 stabilizes HIF-1α-induced metabolic reprogramming and promotes chemoresistance in urothelial cancer. Embo j. 2023;42(4):e110620.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wozny AS, Gauthier A, Alphonse G, Malésys C, Varoclier V, Beuve M et al. Involvement of HIF-1α in the Detection, Signaling, and Repair of DNA Double-Strand Breaks after Photon and Carbon-Ion Irradiation. Cancers (Basel). 2021;13(15).

Choi C, Son A, Lee GH, Shin SW, Park S, Ahn SH, et al. Targeting DNA-dependent protein kinase sensitizes hepatocellular carcinoma cells to proton beam irradiation through apoptosis induction. PLoS ONE. 2019;14(6):e0218049.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iliakis G, Mladenov E, Mladenova V. Necessities in the Processing of DNA double strand breaks and their effects on genomic instability and Cancer. Cancers (Basel). 2019;11(11).

Jiang K, Yin X, Zhang Q, Yin J, Tang Q, Xu M, et al. STC2 activates PRMT5 to induce radioresistance through DNA damage repair and ferroptosis pathways in esophageal squamous cell carcinoma. Redox Biol. 2023;60:102626.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dengler F. Activation of AMPK under Hypoxia: many roads leading to Rome. Int J Mol Sci. 2020;21(7).

Murata Y, Hashimoto T, Urushihara Y, Shiga S, Takeda K, Jingu K, et al. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217. Biochem Biophys Res Commun. 2018;495(4):2566–72.

Article  CAS  PubMed  Google Scholar 

Shiga S, Murata Y, Hashimoto T, Urushihara Y, Fujishima Y, Kudo K, et al. DNA-PKcs is activated under nutrient starvation and activates akt, MST1, FoxO3a, and NDR1. Biochem Biophys Res Commun. 2020;521(3):668–73.

Article  CAS  PubMed  Google Scholar 

Hashimoto T, Murata Y, Urushihara Y, Shiga S, Takeda K, Hosoi Y. Severe hypoxia increases expression of ATM and DNA-PKcs and it increases their activities through Src and AMPK signaling pathways. Biochem Biophys Res Commun. 2018;505(1):13–9.

Article  CAS  PubMed  Google Scholar 

Wang D, Li X, Jiao D, Cai Y, Qian L, Shen Y, et al. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol. 2023;16(1):30.

Article  PubMed  PubMed Central  Google Scholar 

Chi Y, Remsik J, Kiseliovas V, Derderian C, Sener U, Alghader M, et al. Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science. 2020;369(6501):276–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang MX, Wang L, Zeng L, Tu ZW. LCN2 is a potential biomarker for Radioresistance and Recurrence in Nasopharyngeal Carcinoma. Front Oncol. 2020;10:605777.

Article  PubMed  Google Scholar 

Chen F, Xu B, Li J, Yang X, Gu J, Yao X, et al. Hypoxic tumour cell-derived exosomal mir-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10. J Exp Clin Cancer Res. 2021;40(1):38.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif