Therapeutic role of interferon-γ in experimental autoimmune encephalomyelitis is mediated through a tolerogenic subset of splenic CD11b+ myeloid cells

Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15:545–58.

Article  CAS  PubMed  Google Scholar 

Yadav SK, Mindur JE, Ito K, Dhib-Jalbut S. Advances in the immunopathogenesis of multiple sclerosis. Curr Opin Neurol. 2015;28:206–19.

Article  CAS  PubMed  Google Scholar 

Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–17.

Article  CAS  PubMed  Google Scholar 

Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14:183–93.

Article  CAS  PubMed  Google Scholar 

Confavreux C, Vukusic S. The clinical course of multiple sclerosis. Handb Clin Neurol. 2014;122:343–69.

Article  PubMed  Google Scholar 

Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 2014;122:173–89.

Article  PubMed  PubMed Central  Google Scholar 

Lovett-Racke AE. Contribution of EAE to understanding and treating multiple sclerosis. J Neuroimmunol. 2017;304:40–2.

Article  CAS  PubMed  Google Scholar 

Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164:1079–106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 2017;133:223–44.

Article  CAS  PubMed  Google Scholar 

Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G. Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS ONE. 2010;5:e15531.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arellano G, Acuña E, Reyes LI, Ottum PA, De Sarno P, Villarroel L, Ciampi E, Uribe-San Martín R, Cárcamo C, Naves R. Th1 and Th17 cells and Associated cytokines discriminate among clinically isolated syndrome and multiple sclerosis phenotypes. Front Immunol. 2017;8:753.

Article  PubMed  PubMed Central  Google Scholar 

Miller SD, Karpus WJ. Experimental autoimmune encephalomyelitis in the mouse. Curr Protoc Immunol 2007, Chap. 15:Unit 15.11.

Wasser B, Pramanik G, Hess M, Klein M, Luessi F, Dornmair K, Bopp T, Zipp F, Witsch E. Increase of alternatively activated Antigen presenting cells in active experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol. 2016;11:721–32.

Article  PubMed  Google Scholar 

Rawji KS, Yong VW. The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol. 2013;2013:948976.

Article  PubMed  PubMed Central  Google Scholar 

Jiang Z, Jiang JX, Zhang GX. Macrophages: a double-edged sword in experimental autoimmune encephalomyelitis. Immunol Lett. 2014;160:17–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ibañez-Vega J, Vilchez C, Jimenez K, Guevara C, Burgos PI, Naves R. Cellular and molecular regulation of the programmed death-1/programmed death ligand system and its role in multiple sclerosis and other autoimmune diseases. J Autoimmun. 2021;123:102702.

Article  PubMed  Google Scholar 

Wang L, Li Z, Ciric B, Safavi F, Zhang GX, Rostami A. Selective depletion of CD11c(+) CD11b(+) dendritic cells partially abrogates tolerogenic effects of intravenous MOG in murine EAE. Eur J Immunol. 2016;46:2454–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR, Bäckström BT, Sobel RA, Wucherpfennig KW, Strom TB, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med. 2007;13:423–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4 + CD25 + regulatory cells within the central nervous system. J Immunol. 2005;175:3025–32.

Article  CAS  PubMed  Google Scholar 

Ma A, Xiong Z, Hu Y, Qi S, Song L, Dun H, Zhang L, Lou D, Yang P, Zhao Z, et al. Dysfunction of IL-10-producing type 1 regulatory T cells and CD4(+)CD25(+) regulatory T cells in a mimic model of human multiple sclerosis in Cynomolgus monkeys. Int Immunopharmacol. 2009;9:599–608.

Article  CAS  PubMed  Google Scholar 

Koutrolos M, Berer K, Kawakami N, Wekerle H, Krishnamoorthy G. Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS. Acta Neuropathol Commun. 2014;2:163.

Article  PubMed  PubMed Central  Google Scholar 

Oh U, Blevins G, Griffith C, Richert N, Maric D, Lee CR, McFarland H, Jacobson S. Regulatory T cells are reduced during anti-CD25 antibody treatment of multiple sclerosis. Arch Neurol. 2009;66:471–9.

Article  PubMed  PubMed Central  Google Scholar 

Kohm AP, Carpentier PA, Anger HA, Miller SD. Cutting edge: CD4 + CD25 + regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol. 2002;169:4712–6.

Article  CAS  PubMed  Google Scholar 

Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 2017;14:117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frisullo G, Nociti V, Iorio R, Patanella AK, Caggiula M, Marti A, Sancricca C, Angelucci F, Mirabella M, Tonali PA, Batocchi AP. Regulatory T cells fail to suppress CD4T+-bet + T cells in relapsing multiple sclerosis patients. Immunology. 2009;127:418–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haas J, Hug A, Viehöver A, Fritzsching B, Falk CS, Filser A, Vetter T, Milkova L, Korporal M, Fritz B, et al. Reduced suppressive effect of CD4 + CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol. 2005;35:3343–52.

Article  CAS  PubMed  Google Scholar 

Venken K, Hellings N, Broekmans T, Hensen K, Rummens JL, Stinissen P. Natural naive CD4 + CD25 + CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol. 2008;180:6411–20.

Article  CAS  PubMed  Google Scholar 

Valente G, Ozmen L, Novelli F, Geuna M, Palestro G, Forni G, Garotta G. Distribution of interferon-gamma receptor in human tissues. Eur J Immunol. 1992;22:2403–12.

Article  CAS  PubMed  Google Scholar 

Hu X, Ivashkiv LB. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity. 2009;31:539–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhat MY, Solanki HS, Advani J, Khan AA, Keshava Prasad TS, Gowda H, Thiyagarajan S, Chatterjee A. Comprehensive network map of interferon gamma signaling. J Cell Commun Signal. 2018;12:745–51.

Article  PubMed  PubMed Central  Google Scholar 

Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–89.

Article  CAS  PubMed  Google Scholar 

Skurkovich S, Boiko A, Beliaeva I, Buglak A, Alekseeva T, Smirnova N, Kulakova O, Tchechonin V, Gurova O, Deomina T, et al. Randomized study of antibodies to IFN-gamma and TNF-alpha in secondary progressive multiple sclerosis. Mult Scler. 2001;7:277–84.

CAS  PubMed  Google Scholar 

Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1987;1:893–5.

Article  CAS  PubMed  Google Scholar 

Panitch HS, Hirsch RL, Schindler J, Johnson KP. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology. 1987;37:1097–102.

Article  CAS  PubMed  Google Scholar 

Arellano G, Ottum PA, Reyes LI, Burgos PI, Naves R. Stage-specific role of Interferon-Gamma in Experimental Autoimmune encephalomyelitis and multiple sclerosis. Front Immunol. 2015;6:492.

Article  PubMed  PubMed Central  Google Scholar 

Ottum PA, Arellano G, Reyes LI, Iruretagoyena M, Naves R. Opposing roles of Interferon-Gamma on cells of the Central Nervous System in Autoimmune Neuroinflammation. Front Immunol 2015, 6.

留言 (0)

沒有登入
gif