Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer’s disease dementia

2022 Alzheimer's disease facts and figures. Alzheimers Dement. 2022;18(4):700-89.

Long JM, Holtzman DM. Alzheimer Disease: an update on pathobiology and treatment strategies. Cell. 2019;179(2):312–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74.

Article  PubMed  Google Scholar 

Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51(3):404–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellenguez C, Kucukali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54(4):412–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47(9):1091–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao B, Shan Y, Yang Y, Yu Z, Li T, Wang X, Luo T, Zhu Z, Sullivan P, Zhao H, Li Y, Zhu H. Transcriptomewide association analysis of brain structures yields insights into pleiotropy with complex neuropsychiatric traits. Nat Commun. 2021;12(1):2878. https://doi.org/10.1038/s41467-021-23130-y.

Sun Y, Zhu J, Zhou D, Canchi S, Wu C, Cox NJ, et al. A transcriptome-wide association study of Alzheimer’s disease using prediction models of relevant tissues identifies novel candidate susceptibility genes. Genome Med. 2021;13(1):141.

Article  PubMed  PubMed Central  Google Scholar 

Parrish RL, Gibson GC, Epstein MP, Yang J. TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8. HGG Adv. 2022;3(1):100068.

CAS  PubMed  Google Scholar 

Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagpal S, Meng X, Epstein MP, Tsoi LC, Patrick M, Gibson G, et al. TIGAR: an improved bayesian tool for transcriptomic data imputation enhances gene mapping of complex traits. Am J Hum Genet. 2019;105(2):258–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vosa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53(9):1300–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45(10):1238–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luningham JM, Chen J, Tang S, De Jager PL, Bennett DA, Buchman AS, et al. Bayesian genome-wide TWAS method to leverage both cis- and trans-eQTL information through summary statistics. Am J Hum Genet. 2020;107(4):714–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Consortium GT. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.

Article  Google Scholar 

Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189.

Article  PubMed  PubMed Central  Google Scholar 

Sullivan PF, Fan C, Perou CM. Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(3):261–8.

Article  PubMed  Google Scholar 

Lunnon K, Keohane A, Pidsley R, Newhouse S, Riddoch-Contreras J, Thubron EB, et al. Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol Aging. 2017;53:36–47.

Article  CAS  PubMed  Google Scholar 

Souza VC, Morais GS Jr, Henriques AD, Machado-Silva W, Perez DIV, Brito CJ, et al. Whole-blood levels of MicroRNA-9 are decreased in patients with late-onset Alzheimer Disease. Am J Alzheimers Dis Other Demen. 2020;35:1533317520911573.

Article  PubMed  PubMed Central  Google Scholar 

Korukonda A, Dutkowski J, Ronen R, Sachdev P. Developing a blood-derived gene expression biomarker specific for Alzheimer’s disease. Alzheimer's Dement. 2021;17:e053842.

Shigemizu D, Mori T, Akiyama S, Higaki S, Watanabe H, Sakurai T, et al. Identification of potential blood biomarkers for early diagnosis of Alzheimer’s disease through RNA sequencing analysis. Alzheimers Res Ther. 2020;12(1):87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohammad Nasir Abdullah YBW, Abu Bakar Abdul Majeed, Yuslina Zakaria, Norshahida Shaadan. Identification of blood-based transcriptomics biomarkers for Alzheimer's disease using statistical and machine learning classifier. Inform Medi Unlock. 2022;33:101083.

Lee T, Lee H. Prediction of Alzheimer’s disease using blood gene expression data. Sci Rep. 2020;10(1):3485.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angioni D, Delrieu J, Hansson O, Fillit H, Aisen P, Cummings J, et al. Blood biomarkers from research use to clinical practice: what must Be done? A report from the EU/US CTAD task force. J Prev Alzheimers Dis. 2022;9(4):569–79.

CAS  PubMed  PubMed Central  Google Scholar 

Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun. 2018;9(1):1825.

Article  PubMed  PubMed Central  Google Scholar 

Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53(9):1276–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X. ACAT: a fast and powerful p value combination method for rare-variant analysis in sequencing studies. Am J Hum Genet. 2019;104(3):410–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Xie J. Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures. J Am Stat Assoc. 2020;115(529):393–402.

Article  CAS  PubMed  Google Scholar 

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.

Article  CAS  PubMed  Google Scholar 

Yongtao Guan MS. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann Appl Stat. 2011;5(3):1780–815.

Google Scholar 

Yang J, Fritsche LG, Zhou X, Abecasis G, International Age-Related Macular Degeneration Genomics C. A Scalable Bayesian Method for Integrating Functional Information in Genome-wide Association Studies. Am J Hum Genet. 2017;101(3):404-16.

Svishcheva GR, Belonogova NM, Zorkoltseva IV, Kirichenko AV, Axenovich TI. Gene-based association tests using GWAS summary statistics. Bioinformatics. 2019;35(19):3701–8.

Article  CAS  PubMed  Google Scholar 

Stegle O, Parts L, Durbin R, Winn J. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput Biol. 2010;6(5):e1000770.

Article  PubMed  PubMed Central  Google Scholar 

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46.

Article  CAS  PubMed  Google Scholar 

Hu T, Parrish RL, Buchman AS, Tasaki S, Bennett DA, Seyfried NT, et al. Omnibus proteome-wide association study (PWAS-O) identified 43 risk genes for Alzheimer’s disease dementia. medRxiv. 2022:2022.12.25.22283936.

Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019;47(D1):D1038-D43.

Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 2012;40(Database issue):D700-5.

Tang S, Buchman AS, De Jager PL, Bennett DA, Epstein MP, Yang J. Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer’s dementia. PLoS Genet. 2021;17(4):e1009482.

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896–901.

Article  CAS  PubMed  Google Scholar 

Mahmoudi R, Kisserli A, Novella JL, Donvito B, Drame M, Reveil B, et al. Alzheimer's disease is associated with low density of the long CR1 isoform. Neurobiol Aging. 2015;36(4):1766 e5- e12.

Shao Y, Shaw M, Todd K, Khrestian M, D’Aleo G, Barnard PJ, et al. DNA methylation of TOMM40-APOE-APOC2 in Alzheimer’s disease. J Hum Genet. 2018;63(4):459–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen KV, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18(11):1225–34.

Article  CAS

留言 (0)

沒有登入
gif