3D Observation of Pelvic Organs with Dynamic MRI Segmentation: A Bridge Toward Patient-Specific Models

American College of Obstetricians and Gynecologists, American Urogynecologic Society. INTERIM UPDATE: This Practice Bulletin is updated as highlighted to reflect the US Food and Drug Administration order to stop the sale of transvaginal synthetic mesh products for the repair of pelvic organ prolapse. Pelvic Organ Prolapse. Female Pelvic Med Reconstr Surg. 2019;25:397–408. https://doi.org/10.1097/SPV.0000000000000794.

Haylen BT, de Ridder D, Freeman RM, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol Urodyn. 2010;29:4–20. https://doi.org/10.1002/nau.20798.

Article  PubMed  Google Scholar 

Iglesia CB, Smithling KR. Pelvic organ prolapse. Am Fam Physician. 2017;96:179–85.

PubMed  Google Scholar 

Bordeianou L, Hicks CW, Kaiser AM, Alavi K, Sudan R, Wise PE. Rectal prolapse: an overview of clinical features, diagnosis, and patient-specific management strategies. J Gastrointest Surg. 2014;18:1059–69. https://doi.org/10.1007/s11605-013-2427-7.

Article  PubMed  Google Scholar 

Dancz CE, Ozel B. Is there a pelvic organ prolapse threshold that predicts bladder outflow obstruction? Int Urogynecol J. 2011;22:863–8. https://doi.org/10.1007/s00192-011-1373-8.

Article  PubMed  Google Scholar 

Khan ZA, Whittal C, Mansol S, Osborne LA, Reed P, Emery S. Effect of depression and anxiety on the success of pelvic floor muscle training for pelvic floor dysfunction. J Obstet Gynaecol. 2013;33:710–4. https://doi.org/10.3109/01443615.2013.813913.

Article  CAS  PubMed  Google Scholar 

National Guideline Alliance (UK). Urinary incontinence and pelvic organ prolapse in women: management. London: National Institute for Health and Care Excellence (UK); 2019.

Google Scholar 

Ko KJ, Lee K-S. Current surgical management of pelvic organ prolapse: Strategies for the improvement of surgical outcomes. Investig Clin Urol. 2019;60:413–24. https://doi.org/10.4111/icu.2019.60.6.413.

Article  PubMed  PubMed Central  Google Scholar 

Løwenstein E, Møller LA, Laigaard J, Gimbel H. Reoperation for pelvic organ prolapse: a Danish cohort study with 15–20 years’ follow-up. Int Urogynecol J. 2018;29:119–24. https://doi.org/10.1007/s00192-017-3395-3.

Article  PubMed  Google Scholar 

Berger MB, Kolenic GE, Fenner DE, Morgan DM, DeLancey JOL. Structural, functional, and symptomatic differences between women with rectocele versus cystocele and normal support. Am J Obstet Gynecol. 2018;218:510.e1–8. https://doi.org/10.1016/j.ajog.2018.01.033.

Article  PubMed  Google Scholar 

Giannini A, Russo E, Cano A, et al. Current management of pelvic organ prolapse in aging women: EMAS clinical guide. Maturitas. 2018;110:118–23. https://doi.org/10.1016/j.maturitas.2018.02.004.

Article  PubMed  Google Scholar 

Lammers K, Fütterer JJ, Prokop M, Vierhout ME, Kluivers KB. Diagnosing pubovisceral avulsions: a systematic review of the clinical relevance of a prevalent anatomical defect. Int Urogynecol J. 2012;23:1653–64. https://doi.org/10.1007/s00192-012-1805-0.

Article  PubMed  PubMed Central  Google Scholar 

Wyman AM, Rodrigues AA, Hahn L, et al. Estimated levator ani subtended volume: a novel assay for predicting surgical failure after uterosacral ligament suspension. Am J Obstet Gynecol. 2016;214(5):611.e1–6. https://doi.org/10.1016/j.ajog.2015.11.005.

Article  PubMed  Google Scholar 

Luo J, Betschart C, Chen L, Ashton-Miller JA, DeLancey JOL. Using stress MRI to analyze the 3D changes in apical ligament geometry from rest to maximal Valsalva: a pilot study. Int Urogynecol J. 2014;25:197–203. https://doi.org/10.1007/s00192-013-2211-y.

Article  PubMed  Google Scholar 

Luo J, Larson KA, Fenner DE, Ashton-Miller JA, DeLancey JOL. Posterior vaginal prolapse shape and position changes at maximal Valsalva seen in 3-D MRI-based models. Int Urogynecol J. 2012;23:1301–6. https://doi.org/10.1007/s00192-012-1760-9.

Article  PubMed  PubMed Central  Google Scholar 

Morgan DM, Larson K, Lewicky-Gaupp C, Fenner DE, DeLancey JOL. Vaginal support as determined by levator ani defect status 6 weeks after primary surgery for pelvic organ prolapse. Int J Gynaecol Obstet. 2011;114:141–4. https://doi.org/10.1016/j.ijgo.2011.02.020.

Article  PubMed  PubMed Central  Google Scholar 

Ma Z, Jorge RNM, Mascarenhas T, Tavares JMRS. Segmentation of female pelvic cavity in axial T2-weighted MR images towards the 3D reconstruction. Int J Numer Methods Biomed Eng. 2012;28:714–26. https://doi.org/10.1002/cnm.2463.

Article  Google Scholar 

Nekooeimehr I, Lai-Yuen S, Bao P, Weitzenfeld A, Hart S. Automated contour tracking and trajectory classification of pelvic organs on dynamic MRI. J Med Imaging (Bellingham). 2018;5:014008. https://doi.org/10.1117/1.JMI.5.1.014008.

Article  PubMed  Google Scholar 

Da Silva Brandão FSQ, Parente MPL, Rocha PAGG, da Quinta E Costa de Mascarenhas Saraiva MT, Ramos IMAP, Natal Jorge RM. Modeling the contraction of the pelvic floor muscles. Comput Methods Biomech Biomed Engin 2016;19:347–56. https://doi.org/10.1080/10255842.2015.1028031.

Article  Google Scholar 

Xue X, Zheng Q, Gao Z, Shen J, Yao T. The influence of the combined impairments and apical mesh surgery on the biomechanical behavior of the pelvic floor system. Front Bioeng Biotechnol. 2023;11:1292407. https://doi.org/10.3389/fbioe.2023.1292407.

Article  PubMed  Google Scholar 

Gordon MT, DeLancey JOL, Renfroe A, Battles A, Chen L. Development of anatomically based customizable three-dimensional finite-element model of pelvic floor support system: POP-SIM1.0. Interface Focus. 2019;9:20190022. https://doi.org/10.1098/rsfs.2019.0022.

Article  PubMed  PubMed Central  Google Scholar 

Ogier AC, Rapacchi S, Troter AL, Bellemare M-E. 3D Dynamic MRI for pelvis observation—a first step. IEEE International Symposium on Biomedical Imaging, Venice, Italy, 2019, p. 1801–4. https://doi.org/10.1109/ISBI.2019.8759589.

Wendt M, Wacker F, Wolf KJ, Lewin JS, Duerk JL. Keyhole-true FISP: fast T2-weighted imaging for interventional MRT at 0.2 T. Rofo. 1999;170:391–3. https://doi.org/10.1055/s-2007-1011059.

Article  CAS  PubMed  Google Scholar 

Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30:1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

Article  PubMed  PubMed Central  Google Scholar 

Feng F, Ashton-Miller JA, DeLancey JOL, Luo J. Convolutional neural network-based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse. Med Phys. 2020;47:4281–93. https://doi.org/10.1002/mp.14377.

Article  PubMed  Google Scholar 

Feng Z, Nie D, Wang L, Shen D. Semi-supervised learning for pelvic MR image segmentation based on multi-task residual fully convolutional networks. Proc IEEE Int Symp Biomed Imaging. 2018;2018:885–8. https://doi.org/10.1109/ISBI.2018.8363713.

Article  PubMed  PubMed Central  Google Scholar 

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. Cham: Springer; 2015, p. 234–41. https://doi.org/10.1007/978-3-319-24574-4_28.

Hostin M-A, Ogier AC, Pirró N, Bellemare M-E. Combining loss functions for deep learning bladder segmentation on dynamic MRI. 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). Athens, Greece: IEEE; 2021, p. 1–4. https://doi.org/10.1109/BHI50953.2021.9508559.

Jeanditgautier E, Mayeur O, Brieu M, Lamblin G, Rubod C, Cosson M. Mobility and stress analysis of different surgical simulations during a sacral colpopexy, using a finite element model of the pelvic system. Int Urogynecol J. 2016;27:951–7. https://doi.org/10.1007/s00192-015-2917-0.

Article  PubMed  Google Scholar 

Mayeur O, Witz J-F, Lecomte P, Brieu M, Cosson M, Miller K. Influence of geometry and mechanical properties on the accuracy of patient-specific simulation of women pelvic floor. Ann Biomed Eng. 2016;44:202–12. https://doi.org/10.1007/s10439-015-1401-9.

Article  PubMed  Google Scholar 

Sergovich A, Johnson M, Wilson TD. Explorable three-dimensional digital model of the female pelvis, pelvic contents, and perineum for anatomical education. Anat Sci Educ. 2010;3:127–33. https://doi.org/10.1002/ase.135.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif