Interplay of metabolic dysfunction-associated fatty liver disease and papillary thyroid carcinoma: insights from a Chinese cohort

Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708

Article  PubMed  Google Scholar 

Miranda-Filho A, Lortet-Tieulent J, Bray F et al (2021) Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet Diabetes Endocrinol 9:225–234. https://doi.org/10.1016/s2213-8587(21)00027-9

Article  PubMed  Google Scholar 

Seib CD, Sosa JA (2019) Evolving understanding of the epidemiology of thyroid cancer. Endocrinol Metab Clin North Am 48:23–35. https://doi.org/10.1016/j.ecl.2018.10.002

Article  PubMed  Google Scholar 

Davies L, Morris LG, Haymart M et al (2015) American association of clinical endocrinologists and american college of endocrinology disease state clinical review: the increasing incidence of thyroid cancer. Endocrine Pract Offi J Am Coll Endocrinol Am Assoc Clin Endocrinol 21:686–696. https://doi.org/10.4158/ep14466.dscr

Article  Google Scholar 

Yin DT, He H, Yu K et al (2018) The association between thyroid cancer and insulin resistance, metabolic syndrome and its components: a systematic review and meta-analysis. Int J Sur (London, England) 57:66–75. https://doi.org/10.1016/j.ijsu.2018.07.013

Article  Google Scholar 

Park JH, Choi M, Kim JH et al (2020) Metabolic syndrome and the risk of thyroid cancer: a nationwide population-based cohort study. Thyroid : Offi J Am Thyroid Assoc 30:1496–1504. https://doi.org/10.1089/thy.2019.0699

Article  CAS  Google Scholar 

Song JL, Li LR, Yu XZ et al (2022) Association between metabolic syndrome and clinicopathological features of papillary thyroid cancer. Endocrine 75:865–871. https://doi.org/10.1007/s12020-021-02940-6

Article  CAS  PubMed  Google Scholar 

Xiao R, Ni C, Cai Y et al (2023) Prevalence and impact of non-alcoholic fatty liver disease in patients with papillary thyroid carcinoma. Endocrine 80:619–629. https://doi.org/10.1007/s12020-023-03312-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin S, Huang J, Wang M et al (2020) Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver international Offi J Int Assoc Stud Liver 40:2082–2089. https://doi.org/10.1111/liv.14548

Article  Google Scholar 

Zheng KI, Eslam M, George J, Zheng MH (2020) When a new definition overhauls perceptions of MAFLD related cirrhosis care. Hepatobiliary Sur Nutr 9:801–804. https://doi.org/10.21037/hbsn-20-725

Article  Google Scholar 

Liu Z, Lin C, Suo C et al (2022) Metabolic dysfunction-associated fatty liver disease and the risk of 24 specific cancers. Metab Clini Exp 127:154955. https://doi.org/10.1016/j.metabol.2021.154955

Article  CAS  Google Scholar 

Wei S, Hao Y, Dong X et al (2023) The relationship between metabolic dysfunction-associated fatty liver disease and the incidence rate of extrahepatic cancer. Front Endocrinol 14:985858. https://doi.org/10.3389/fendo.2023.985858

Article  Google Scholar 

Eslam M, Newsome PN, Sarin SK et al (2020) A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 73:202–209. https://doi.org/10.1016/j.jhep.2020.03.039

Article  PubMed  Google Scholar 

Xiao G, Zhu S, Xiao X, Yan L, Yang J, Wu G (2017) Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology (Baltimore, MD) 66:1486–1501. https://doi.org/10.1002/hep.29302

Article  CAS  PubMed  Google Scholar 

Vallet-Pichard A, Mallet V, Nalpas B et al (2007) FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology (Baltimore, MD) 46:32–36. https://doi.org/10.1002/hep.21669

Article  CAS  PubMed  Google Scholar 

Angulo P, Hui JM, Marchesini G et al (2007) The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology (Baltimore, MD) 45:846–854. https://doi.org/10.1002/hep.21496

Article  CAS  PubMed  Google Scholar 

Sun W, Cui H, Li N et al (2016) Comparison of FIB-4 index, NAFLD fibrosis score and BARD score for prediction of advanced fibrosis in adult patients with non-alcoholic fatty liver disease: a meta-analysis study. Hepatol Res Offi J Jpn Soc Hepatol 46:862–870. https://doi.org/10.1111/hepr.12647

Article  CAS  Google Scholar 

Lee H, Lee HW, Kim SU, Chang Kim H (2022) Metabolic dysfunction-associated fatty liver disease increases colon cancer risk: a nationwide cohort study. Clin Transl Gastroenterol 13:e00435. https://doi.org/10.14309/ctg.0000000000000435

Article  PubMed  PubMed Central  Google Scholar 

Lin X, Chen C, Jiang T et al (2023) Metabolic dysfunction-associated fatty liver disease (MAFLD) is associated with cervical stromal involvement in endometrial cancer patients: a cross-sectional study in South China. Curr oncology (Toronto, Ont) 30:3787–3799. https://doi.org/10.3390/curroncol30040287

Article  Google Scholar 

Kwon H, Han KD, Moon SJ, Park SE, Rhee EJ, Lee WY (2023) Nonalcoholic fatty liver disease and the risk of thyroid cancer among young adults in south korea. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgad575

Article  Google Scholar 

Wang Z, Zhao X, Chen S et al (2021) Associations between nonalcoholic fatty liver disease and cancers in a large cohort in China. Clinical Gastroenterol Hepatol Offi Clin Pract J Am Gastroenterol Assoc 19:788-796.e4. https://doi.org/10.1016/j.cgh.2020.05.009

Article  Google Scholar 

Shah PK, Shah KK, Karakousis GC, Reinke CE, Kelz RR, Fraker DL (2012) Regional recurrence after lymphadenectomy for clinically evident lymph node metastases from papillary thyroid cancer: a cohort study. Ann Surg Oncol 19:1453–1459. https://doi.org/10.1245/s10434-011-1890-1

Article  PubMed  Google Scholar 

Sapuppo G, Palermo F, Russo M et al (2017) Latero-cervical lymph node metastases (N1b) represent an additional risk factor for papillary thyroid cancer outcome. J Endocrinol Invest 40:1355–1363. https://doi.org/10.1007/s40618-017-0714-y

Article  CAS  PubMed  Google Scholar 

Adam MA, Pura J, Goffredo P et al (2015) Presence and number of lymph node metastases are associated with compromised survival for patients younger than age 45 years with papillary thyroid cancer. J Clin oncol Offi J Am Soc Clin Oncol 33:2370–2375. https://doi.org/10.1200/jco.2014.59.8391

Article  Google Scholar 

Kim H, Kwon H, Moon BI (2021) Association of multifocality with prognosis of papillary thyroid carcinoma: a systematic review and meta-analysis. JAMA Otolaryngol—Head Neck Sur 147:847–854. https://doi.org/10.1001/jamaoto.2021.1976

Article  Google Scholar 

Joseph KR, Edirimanne S, Eslick GD (2018) Multifocality as a prognostic factor in thyroid cancer: a meta-analysis. Int J Sur (London, England) 50:121–125. https://doi.org/10.1016/j.ijsu.2017.12.035

Article  Google Scholar 

Howell GM, Carty SE, Armstrong MJ et al (2011) Both BRAF V600E mutation and older age (≥ 65 years) are associated with recurrent papillary thyroid cancer. Ann Surg Oncol 18:3566–3571. https://doi.org/10.1245/s10434-011-1781-5

Article  PubMed  Google Scholar 

Yang F, Zhong Q, Huang Z, Lian M, Fang J (2019) Survival in papillary thyroid microcarcinoma: a comparative analysis between the 7th and 8th Versions of the AJCC/UICC staging system based on the SEER database. Front Endocrinol 10:10. https://doi.org/10.3389/fendo.2019.00010

Article  CAS  Google Scholar 

Arora N, Turbendian HK, Kato MA, Moo TA, Zarnegar R, Fahey TJ 3rd (2009) Papillary thyroid carcinoma and microcarcinoma: is there a need to distinguish the two? Thyroid Offi J Am Thyroid Assoc 19:473–477. https://doi.org/10.1089/thy.2008.0185

Article  Google Scholar 

Baloch ZW, Asa SL, Barletta JA et al (2022) Overview of the 2022 WHO classification of thyroid neoplasms. Endocr Pathol 33:27–63. https://doi.org/10.1007/s12022-022-09707-3

Article  PubMed  Google Scholar 

Li G, Li R, Song L et al (2020) Implications of extrathyroidal extension invading only the strap muscles in papillary thyroid carcinomas. Thyroid Off J Am Thyroid Assoc 30:57–64. https://doi.org/10.1089/thy.2018.0801

Article  CAS  Google Scholar 

Yang Z, Wei X, Pan Y et al (2021) A new risk factor indicator for papillary thyroid cancer based on immune infiltration. Cell Death Dis 12:51. https://doi.org/10.1038/s41419-020-03294-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Wang J, Huang F, Yao Y, Xu L (2021) Leptin induces NAFLD progression through infiltrated CD8+ T lymphocytes mediating pyroptotic-like cell death of hepatocytes and macrophages. Dig Liver Dis Offi J Ital Soc Gastroenterol Ital Assoc Stud Liver 53:598–605. https://doi.org/10.1016/j.dld.2020.10.025

Article  CAS  Google Scholar 

Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K (2020) Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res 2020:7489795. https://doi.org/10.1155/2020/7489795

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim WG, Park JW, Willingham MC, Cheng SY (2013) Diet-induced obesity increases tumor growth and promotes anaplastic change in thyroid cancer in a mouse model. Endocrinology 154:2936–2947. https://doi.org/10.1210/en.2013-1128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brower V (2012) Illuminating the diabetes-cancer link. J Natl Cancer Inst 104:1048–1050. https://doi.org/10.1093/jnci/djs322

Article  PubMed  Google Scholar 

Lu G, Yu X, Jiang W et al (2022) Alterations of gut microbiome and metabolite profiles associated with anabatic lipid dysmetabolism in thyroid cancer. Front Endocrinol 13:893164. https://doi.org/10.3389/fendo.2022.893164

Article 

留言 (0)

沒有登入
gif