Feeding the future: the role of nanotechnology in tailored nutrition

Abd Elkodous M, El-Husseiny HM, El-Sayyad GS, et al. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnol Rev. 2021;10:1662–739. https://doi.org/10.1515/ntrev-2021-0099.

Article  CAS  Google Scholar 

Abdelhameed R, Abu-Elsaad N, Abdel Latef A, et al. Tracking of zinc ferrite nanoparticle effects on pea (Pisum sativum L.) plant growth, pigments, mineral content and arbuscular mycorrhizal colonization. Plants. 2021;10:583. https://doi.org/10.3390/plants10030583.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdelrahman M, Wei Z, Rohila JS, et al. Multiplex genome-editing technologies for revolutionizing plant biology and crop improvement. Front Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.721203.

Article  PubMed  PubMed Central  Google Scholar 

Achari GA, Kowshik M. Recent developments on nanotechnology in agriculture: plant mineral nutrition, health, and interactions with soil microflora. J Agric Food Chem. 2018;66:8647–61. https://doi.org/10.1021/acs.jafc.8b00691.

Article  CAS  PubMed  Google Scholar 

Adiego-Pérez B, Randazzo P, Daran JM, et al. Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiol Lett. 2019. https://doi.org/10.1093/femsle/fnz086.

Article  PubMed  PubMed Central  Google Scholar 

Ahmar S, Mahmood T, Fiaz S, et al. Advantage of nanotechnology-based genome editing system and its application in crop improvement. Front Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.663849.

Article  PubMed  PubMed Central  Google Scholar 

Alfaro Serrano B, Gheorghe LC, Exner T, et al. The role of FAIR nanosafety data and nanoinformatics in achieving the UN sustainable development goals: the nanocommons experience. RSC Sustain. 2024. https://doi.org/10.1039/D3SU00148B.

Article  Google Scholar 

Alghuthaymi MA, Rajkuberan C, Santhiya T, et al. Green synthesis of gold nanoparticles using Polianthes tuberosa L. Floral Extract Plants. 2021;10:2370. https://doi.org/10.3390/plants10112370.

Article  CAS  PubMed  Google Scholar 

Ali SS, Al-Tohamy R, Koutra E, et al. Nanobiotechnological advancements in agriculture and food industry: applications, nanotoxicity, and future perspectives. Sci Total Environ. 2021;792: 148359. https://doi.org/10.1016/j.scitotenv.2021.148359.

Article  CAS  PubMed  Google Scholar 

Allen ER, Ming DW, Hossner LR, et al. Growth and nutrient uptake of wheat in clinoptilolite-phosphate rock substrates. Agron J. 1995;87:1052–9. https://doi.org/10.2134/agronj1995.00021962008700060004x.

Article  Google Scholar 

Alloul A, Spanoghe J, Machado D, et al. Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels. Microb Biotechnol. 2022;15:6–12. https://doi.org/10.1111/1751-7915.13747.

Article  PubMed  Google Scholar 

Armario Najera V, Twyman RM, Christou P, et al. Applications of multiplex genome editing in higher plants. Curr Opin Biotechnol. 2019;59:93–102. https://doi.org/10.1016/j.copbio.2019.02.015.

Article  CAS  PubMed  Google Scholar 

Attaallah R, Amine A. Highly selective and sensitive detection of cadmium ions by horseradish peroxidase enzyme inhibition using a colorimetric microplate reader and smartphone paper-based analytical device. Microchem J. 2022;172: 106940. https://doi.org/10.1016/j.microc.2021.106940.

Article  CAS  Google Scholar 

Bai X, Huang J, Li W, et al. Portable dual-mode biosensor based on smartphone and glucometer for on-site sensitive detection of Listeria monocytogenes. Sci Total Environ. 2023;874: 162450. https://doi.org/10.1016/j.scitotenv.2023.162450.

Article  CAS  PubMed  Google Scholar 

Balagurunathan B, Ling H, Choi WJ, et al. Potential use of microbial engineering in single-cell protein production. Curr Opin Biotechnol. 2022;76:102740.

Article  CAS  PubMed  Google Scholar 

Banta AB, Enright AL, Siletti C, et al. A high-efficacy CRISPR interference system for gene function discovery in Zymomonas mobilis. Appl Environ Microbiol. 2020. https://doi.org/10.1128/AEM.01621-20.

Article  PubMed  PubMed Central  Google Scholar 

Di Battista V, Sanchez-Lievanos KR, Jeliazkova N, et al. Similarity of multicomponent nanomaterials in a safer-by-design context: the case of core-shell quantum dots. Environ Sci Nano. 2024. https://doi.org/10.1039/d3en00338h.

Article  Google Scholar 

Beheiry H, Hasanin M, Abdelkhalek A, et al. Potassium Spraying preharvest and nanocoating postharvest improve the quality and extend the storage period for acid lime (Citrus aurantifolia Swingle) fruits. Plants. 2023;12:3848. https://doi.org/10.3390/plants12223848.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett RK, Gregory GJ, Gonzalez JE, et al. Improving the methanol tolerance of an Escherichia coli methylotroph via adaptive laboratory evolution enhances synthetic methanol utilization. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.638426.

Article  PubMed  PubMed Central  Google Scholar 

Bourgade B, Minton NP, Islam MA. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev. 2021. https://doi.org/10.1093/femsre/fuab008.

Article  PubMed  PubMed Central  Google Scholar 

Boynton JE, Gillham NW, Harris EH, et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science. 1979;240:1534–8. https://doi.org/10.1126/science.2897716.

Article  Google Scholar 

Bratosin BC, Darjan S, Vodnar DC. Single cell protein: a potential substitute in human and animal nutrition. Sustainability. 2021;13:9284. https://doi.org/10.3390/su13169284.

Article  CAS  Google Scholar 

Burke D, Pietrasiak N, Situ S, et al. Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci. 2015;16:23630–50. https://doi.org/10.3390/ijms161023630.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai CQ, Doyon Y, Ainley WM, et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol. 2009;69:699–709. https://doi.org/10.1007/s11103-008-9449-7.

Article  CAS  PubMed  Google Scholar 

Cardi T, Murovec J, Bakhsh A, et al. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. Trends Plant Sci. 2023;28:1144–65.

Article  CAS  PubMed  Google Scholar 

Chao R, Mishra S, Si T, et al. Engineering biological systems using automated biofoundries. Metab Eng. 2017;42:98–108. https://doi.org/10.1016/j.ymben.2017.06.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Char SN, Lee H, Yang B. Use of CRISPR/Cas9 for targeted mutagenesis in Sorghum. Curr Protoc Plant Biol. 2020. https://doi.org/10.1002/cppb.20112.

Article  PubMed  Google Scholar 

Chávez-Hernández JA, Velarde-Salcedo AJ, Navarro-Tovar G, et al. Safe nanomaterials: from their use, application, and disposal to regulations. Nanoscale Adv. 2024. https://doi.org/10.1039/D3NA01097J.

Article  PubMed  PubMed Central  Google Scholar 

Chen B, Lee HL, Heng YC, et al. Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol Adv. 2018;36:1870–81. https://doi.org/10.1016/j.biotechadv.2018.07.005.

Article  CAS  PubMed  Google Scholar 

Cheng Q, Wei T, Farbiak L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15:313–20. https://doi.org/10.1038/s41565-020-0669-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cunningham FJ, Goh NS, Demirer GS, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 2018;36:882–97. https://doi.org/10.1016/j.tibtech.2018.03.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curtin SJ, Zhang F, Sander JD, et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 2011;156:466–73. https://doi.org/10.1104/pp.111.172981.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daniel AI, Hüsselmann L, Shittu OK, et al. Application of nanotechnology and proteomic tools in crop development towards sustainable agriculture. J Crop Sci Biotechnol. 2024. https://doi.org/10.1007/s12892-024-00235-6.

Article  Google Scholar 

Demirer GS, Silva TN, Jackson CT, et al. Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nat Nanotechnol. 2021;16:243–50. https://doi.org/10.1038/s41565-021-00854-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Demirer GS, Zhang H, Goh NS, et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. 2020. Sci Adv. https://doi.org/10.1126/sciadv.aaz0495.

Demirer GS, Zhang H, Matos JL, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol. 2019;14:456–64.

留言 (0)

沒有登入
gif