Peralta-Arrieta I, Armas-López L, Zúñiga J, Ávila-Moreno F. Epigenetics in non-small cell lung carcinomas. Salud Publica Mex. 2019;61:318–28. https://doi.org/10.21149/10089.
Nasim F, Sabath BF, Eapen GA. Lung cancer. Med Clin North Am. 2019;103:463–73. https://doi.org/10.1016/j.mcna.2018.12.006.
Lim JU, Yeo CD, Rhee CK, Kang HS, Park CK, Kim JS, Kim JW, Kim SJ, Yoon HK, Lee SH. Comparison of clinical characteristics and overall survival between spirometrically diagnosed chronic obstructive pulmonary disease (COPD) and non-COPD never-smoking stage I-IV non-small cell lung cancer patients. Int J Chron Obstruct Pulmon Dis. 2019;14:929–38. https://doi.org/10.2147/copd.s190244.
Article CAS PubMed PubMed Central Google Scholar
Sgambato A, Casaluce F, Maione P, Gridelli C. Targeted therapies in non-small cell lung cancer: a focus on ALK/ROS1 tyrosine kinase inhibitors. Expert Rev Anticancer Ther. 2018;18:71–80. https://doi.org/10.1080/14737140.2018.1412260.
Article CAS PubMed Google Scholar
Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019;7:387–401. https://doi.org/10.1016/s2213-2600(19)30084-0.
Article CAS PubMed Google Scholar
Camidge DR, Kim HR, Ahn MJ, Yang JCH, Han JY, Lee JS, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med. 2018;379:2027–39. https://doi.org/10.1056/nejmoa1810171.
Article CAS PubMed Google Scholar
Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin. 2020;13:17–33. https://doi.org/10.1016/j.path.2019.11.002.
Coomer AO, Black F, Greystoke A, Munkley J, Elliott DJ. Alternative splicing in lung cancer. Biochim Biophys Acta Gene Regul Mech. 2019;1862:194388. https://doi.org/10.1016/j.bbagrm.2019.05.006.
Article CAS PubMed Google Scholar
Jin M, Liu B, Chen C, Huang Y, Zhang H, Chen B, et al. Genome-wide splicing quantitative expression locus analysis identifies causal risk variants for non-small cell lung cancer. Cancer Res. 2023;83(10):1742–56. https://doi.org/10.1158/0008-5472.can-22-3184.
Article CAS PubMed Google Scholar
Wang X, Codreanu SG, Wen B, Li K, Chambers MC, Liebler DC, Zhang B. Detection of proteome diversity resulted from alternative splicing is limited by trypsin cleavage specificity. Mol Cell Proteomics. 2018;17:422–30. https://doi.org/10.1074/mcp.ra117.000155.
Article CAS PubMed Google Scholar
El Marabti E, Younis I. The cancer spliceome: reprograming of alternative splicing in cancer. Front Mol Biosci. 2018;5:80. https://doi.org/10.3389/fmolb.2018.00080.
Article CAS PubMed PubMed Central Google Scholar
Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34:211-224.e6. https://doi.org/10.1016/j.ccell.2018.07.001.
Article CAS PubMed PubMed Central Google Scholar
Baldacci S, Kherrouche Z, Descarpentries C, Wislez M, Dansin E, Furlan A, et al. MET exon 14 splicing sites mutations: a new therapeutic opportunity in lung cancer. Rev Mal Respir. 2018;35:796–812. https://doi.org/10.1016/j.rmr.2018.01.011.
Article CAS PubMed Google Scholar
Zheng M, Niu Y, Bu J, Liang S, Zhang Z, Liu J, Guo L, Zhang Z, Wang Q. ESRP1 regulates alternative splicing of CARM1 to sensitize small cell lung cancer cells to chemotherapy by inhibiting TGF-β/Smad signaling. Aging (Albany NY). 2021;13(3):3554–72. https://doi.org/10.18632/aging.202295.
Article CAS PubMed Google Scholar
Vander Borght A, Duysinx M, Broers JLV, Ummelen M, Falkenberg FW, Hahnel C, van der Zeijst BAM. The 180 splice variant of NCAM-containing exon 18-is specifically expressed in small cell lung cancer cells. Transl Lung Cancer Res. 2018;7(3):376–88. https://doi.org/10.21037/tlcr.2018.03.03.
Article CAS PubMed PubMed Central Google Scholar
Ule J, Blencowe BJ. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol Cell. 2019;76:329–45. https://doi.org/10.1016/j.molcel.2019.09.017.
Article CAS PubMed Google Scholar
Bijen HM, van der Steen DM, Hagedoorn RS, Wouters AK, Wooldridge L, Falkenburg JHF, et al. Preclinical strategies to identify off-target toxicity of high-affinity TCRs. Mol Ther. 2019;26:1206–14. https://doi.org/10.1016/j.ymthe.2018.02.017.
Payer LM, Steranka JP, Ardeljan D, Walker J, Fitzgerald KC, Calabresi PA, et al. Alu insertion variants alter mRNA splicing. Nucleic Acids Res. 2019;47:421–31. https://doi.org/10.1093/nar/gky1086.
Article CAS PubMed Google Scholar
Frankiw L, Baltimore D, Li G. Alternative mRNA splicing in cancer immunotherapy. Nat Rev Immunol. 2019;19:675–87. https://doi.org/10.1038/s41577-019-0195-7.
Article CAS PubMed Google Scholar
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol. 2021;14(6):101077. https://doi.org/10.1016/j.tranon.2021.101077.
Article CAS PubMed PubMed Central Google Scholar
Zhao B, Xiang Z, Wu B, Zhang X, Feng N, Wei Y, Zhang W. Use of novel m6A regulator-mediated methylation modification patterns in distinct tumor microenvironment profiles to identify and predict glioma prognosis and progression, T-cell dysfunction, and clinical response to ICI immunotherapy. Curr Pharm Des. 2023;29(1):60–78. https://doi.org/10.2174/1381612829666221207112438.
Article CAS PubMed Google Scholar
Li N, Wang J, Zhan X. Identification of immune-related gene signatures in lung adenocarcinoma and lung squamous cell carcinoma. Front Immunol. 2021;12:752643. https://doi.org/10.3389/fimmu.2021.752643.
Article CAS PubMed PubMed Central Google Scholar
Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, Pontiuset J, et al. ImmPort: disseminating data to the public for the future of immunology. Immunol Res. 2014;58:234–9. https://doi.org/10.1007/s12026-014-8516-1.
Article CAS PubMed Google Scholar
Banerjee S, Galarza-Muñoz G, Garcia-Blanco MA. Role of RNA alternative splicing in T cell function and disease. Genes (Basel). 2023;14(10):1896. https://doi.org/10.3390/genes14101896.
Article CAS PubMed Google Scholar
Meazza R, Verdiani S, Biassoni R, Coppolecchia M, Gaggero A, Orengo AM, et al. Identification of a novel interleukin-15 (IL-15) transcript isoform generated by alternative splicing in human small cell lung cancer cell lines. Oncogene. 1996;12:2187–92.
Tano V, Jans DA, Bogoyevitch MA. Oligonucleotide-directed STAT3 alternative splicing switch drives anti-tumorigenic outcomes in MCF10 human breast cancer cells. Biochem Biophys Res Commun. 2019;513:1076–82. https://doi.org/10.1016/j.bbrc.2019.04.054.
Article CAS PubMed Google Scholar
Zhao S, Chang SL, Linderman JJ, Feng FY, Luker GD. A comprehensive analysis of CXCL12 isoforms in breast cancer (1,2). Transl Oncol. 2014;7:429–38. https://doi.org/10.1016/j.tranon.2014.04.001.
Article PubMed PubMed Central Google Scholar
Han N, Liu Z. Targeting alternative splicing in cancer immunotherapy. Front Cell Dev Biol. 2023;11:1232146. https://doi.org/10.3389/fcell.2023.1232146.
Article PubMed PubMed Central Google Scholar
Golubnitschaja O, Costigliola V, EPMA. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3(1):14. https://doi.org/10.1186/1878-5085-3-14.
Article PubMed PubMed Central Google Scholar
Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021;22(16):8661. https://doi.org/10.3390/ijms22168661.
Article CAS PubMed PubMed Central Google Scholar
Li N, Zhan X. Signaling pathway network alterations in human ovarian cancers identified with quantitative mitochondrial proteomics. EPMA J. 2019;10:153–72. https://doi.org/10.1007/s13167-019-00170-5.
Article PubMed PubMed Central Google Scholar
Karatza E, Papachristos A, Sivolapenko GB, Gonzalez D. Machine learning-guided covariate selection for time-to-event models developed from a small sample of real-world patients receiving bevacizumab treatment. CPT Pharmacometrics Syst Pharmacol. 2022;11(10):1328–40. https://doi.org/10.1002/psp4.12848.
留言 (0)