Extracellular vesicles promote migration despite BRAF inhibitor treatment in malignant melanoma cells

Czystowska-Kuzmicz M, Whiteside TL. The potential role of tumor-derived exosomes in diagnosis, prognosis, and response to therapy in cancer. Exp Opin Biol Ther. 2021;21(2):241–58. https://doi.org/10.1080/14712598.2020.1813276. (Taylor and Francis Ltd).

Article  CAS  Google Scholar 

Zhu Q. et al. MiR-124-3p impedes the metastasis of non-small cell lung cancer via extracellular exosome transport and intracellular PI3K/AKT signaling. Biomark Res. 2023; 11(1). https://doi.org/10.1186/s40364-022-00441-w.

Silva J, et al. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer. 2012;51(4):409–18. https://doi.org/10.1002/gcc.21926.

Article  CAS  PubMed  Google Scholar 

Ludwig S, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer. Clin Cancer Res. 2017;23(16):4843–54. https://doi.org/10.1158/1078-0432.CCR-16-2819.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peinado H, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91. https://doi.org/10.1038/nm.2753.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zorrilla SR, Pérez-Sayans M, Fais S, Logozzi M, Torreira MG, and García AG. A pilot clinical study on the prognostic relevance of plasmatic exosomes levels in oral squamous cell carcinoma patients. Cancers (Basel). 2019; 11(3). https://doi.org/10.3390/cancers11030429.

Carretero-González A, et al. Characterization of plasma circulating small extracellular vesicles in patients with metastatic solid tumors and newly diagnosed brain metastasis. Oncoimmunology. 2022; 11(1). https://doi.org/10.1080/2162402X.2022.2067944.

Singh A, Fedele C, Lu H, Nevalainen MT, Keen JH, Languino LR. Exosome-mediated transfer of αvβ3 integrin from tumorigenic to nontumorigenic cells promotes a migratory phenotype. Mol Cancer Res. 2016;14(11):1136–46. https://doi.org/10.1158/1541-7786.MCR-16-0058.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sung BH, Ketova T, Hoshino D, Zijlstra A, and Weaver AM. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015; 6. https://doi.org/10.1038/ncomms8164.

Janpipatkul K, Panvongsa W, Worakitchanon W, Reungwetwattana T, Chairoungdua A. Extracellular vesicles from EGFR T790M/L858R-mutant non-small cell lung cancer promote cancer progression. Anticancer Res. 2022;42(8):3835–44. https://doi.org/10.21873/anticanres.15874.

Article  CAS  PubMed  Google Scholar 

Zomer A, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046–57. https://doi.org/10.1016/j.cell.2015.04.042.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luan W. et al. Exosomal miR-106b-5p derived from melanoma cell promotes primary melanocytes epithelial-mesenchymal transition through targeting EphA4. J Exp Clin Cancer Res. 2021; 40(1). https://doi.org/10.1186/s13046-021-01906-w.

Lazar I, et al. Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines. Pigment Cell Melanoma Res. 2015;28(4):464–75. https://doi.org/10.1111/pcmr.12380.

Article  CAS  PubMed  Google Scholar 

Seibold T, Waldenmaier M, Seufferlein T and Eiseler T. Small extracellular vesicles and metastasis—blame the messenger. Cancers (Basel). 2021; 13(17). https://doi.org/10.3390/cancers13174380.

Urabe F, Patil K, Ramm GA, Ochiya T, and Soekmadji C. Extracellular vesicles in the development of organ-specific metastasis. J Extracellular Vesicles. 2021; 10(9). John Wiley Sons Inc. https://doi.org/10.1002/jev2.12125.

Mazurkiewicz J. et al. Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal. 2022; 20(1). https://doi.org/10.1186/s12964-022-00871-x.

Popěna I. et al. Effect of colorectal cancer-derived extracellular vesicles on the immunophenotype and cytokine secretion profile of monocytes and macrophages. Cell Commun Signal. 2018; 16(1). https://doi.org/10.1186/s12964-018-0229-y.

Matsumoto A, et al. Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells. Cancer Sci. 2017;108(9):1803–10. https://doi.org/10.1111/cas.13310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sung BH, Parent CA, Weaver AM. Extracellular vesicles: critical players during cell migration. Dev Cell. 2021;56(13):1861–74. https://doi.org/10.1016/j.devcel.2021.03.020. (Cell Press).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mannavola F, Tucci M, Felici C, Passarelli A, D’Oronzo S, and Silvestris F. Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. J Transl Med. 2019; 17(1). https://doi.org/10.1186/s12967-019-1982-4.

Isola AL, Eddy K, Zembrzuski K, Goydos JS, and Chen S. Exosomes released by metabotropic glutamate receptor 1 (GRM1) expressing melanoma cells increase cell migration and invasiveness. 2017. Available: www.impactjournals.com/oncotarget

Peinado H, et al. Pre-metastatic niches: Organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–17. https://doi.org/10.1038/nrc.2017.6. (Nature Publishing Group).

Article  CAS  PubMed  Google Scholar 

Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. 2021;21(3):162–80. https://doi.org/10.1038/s41568-020-00320-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pagliuca C, Di Leo L, and De Zio D. New Insights into the Phenotype Switching of Melanoma. Cancers. 2022; 14(24). MDPI. https://doi.org/10.3390/cancers14246118.

Turner N, Ware O, Bosenberg M. Genetics of metastasis: melanoma and other cancers. Clin Exp Metastasis. 2018;35(5–6):379–91. https://doi.org/10.1007/s10585-018-9893-y.

Article  CAS  PubMed  Google Scholar 

Hossain SM, Eccles MR. Phenotype switching and the melanoma microenvironment; impact on immunotherapy and drug resistance. Int J Mol Sci. 2023;24(2):1601. https://doi.org/10.3390/ijms24021601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

B. R. Halle and D. B. Johnson. Defining and Targeting BRAF Mutations in Solid Tumors. Curr Treat Options Oncol. 2021; 22(4). Springer. https://doi.org/10.1007/s11864-021-00827-2.

Savoia P, Fava P, Casoni F, and Cremona O. Targeting the ERK signaling pathway in melanoma. Int J Mol Sci. 2019; 20(6). MDPI AG. https://doi.org/10.3390/ijms20061483.

H. Davies et al. Mutations of the BRAF gene in human cancer. 2002. Available: www.nature.com/nature

McArthur GA, et al. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): Extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323–32. https://doi.org/10.1016/S1470-2045(14)70012-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapman PB, et al. Vemurafenib in patients with BRAFV600 mutation-positive metastatic melanoma: final overall survival results of the randomized BRIM-3 study. Ann Oncol. 2017;28(10):2581–7. https://doi.org/10.1093/annonc/mdx339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McArthur GA, et al. Vemurafenib in metastatic melanoma patients with brain metastases: an open-label, single-arm, phase 2, multicentre study. Ann Oncol. 2017;28(3):634–41. https://doi.org/10.1093/annonc/mdw641.

Article  CAS  PubMed  Google Scholar 

Sosman JA, et al. Survival in BRAF V600–mutant advanced melanoma treated with vemurafenib. New Engl J Med. 2012;366(8):707–14. https://doi.org/10.1056/NEJMoa1112302.

Article  CAS  PubMed  Google Scholar 

Kainthla R, Kim KB, Falchook GS. Dabrafenib. Recent Results Cancer Res. 2014;201:227–40. https://doi.org/10.1007/978-3-642-54490-3_14.

Article  CAS  PubMed  Google Scholar 

Skudalski L, Waldman R, Kerr PE, Grant-Kels JM. Melanoma: an update on systemic therapies. J Am Acad Dermatol. 2022;86(3):515–24. https://doi.org/10.1016/j.jaad.2021.09.075.

Article  PubMed  Google Scholar 

Weitzenböck HP, et al. Proteome analysis of NRF2 inhibition in melanoma reveals CD44 up-regulation and increased apoptosis resistance upon vemurafenib treatment. Cancer Med. 2022;11(4):956–67. https://doi.org/10.1002/cam4.4506.

Article  CAS  PubMed  Google Scholar 

Tang F, Li S, Liu D, Chen J, Han C. Sorafenib sensitizes melanoma cells to vemurafenib through ferroptosis. Transl Cancer Res. 2020;9(3):1584–93. https://doi.org/10.21037/tcr.2020.01.62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao J et al. Oncotarget 58021 www.impactjournals.com/oncotarget Targeting of the MAPK and AKT pathways in conjunctival melanoma shows potential synergy. 2017. Available: www.impactjournals.com/oncotarget/

Liu W, et al. KSRP modulates melanoma growth and efficacy of vemurafenib. Biochim Biophys Acta Gene Regul Mech. 2019;1862(8):759–70. https://doi.org/10.1016/j.bbagrm.2019.06.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartman ML, Rozanski M, Osrodek M, Zalesna I, Czyz M. Vemurafenib and trametinib reduce expression of CTGF and IL-8 in V600EBRAF melanoma cells. Lab Investig. 2017;97(2):217–27. https://doi.org/10.1038/labinvest.2016.140.

Article  CAS  PubMed  Google Scholar 

Gentilcore G et al. Effect of dabrafenib on melanoma cell lines harbouring the BRAFV600D/R mutations. BMC Cancer. 2013; 13. https://doi.org/10.1186/1471-2407-13-17.

Caporali S et al. Targeting the PTTG1 oncogene impairs proliferation and invasiveness of melanoma cells sensitive or with acquired resistance to the BRAF inhibitor dabrafenib. 2017. Available: www.impactjournals.com/oncotarget

Barceló C, et al. T-type calcium channels as potential therapeutic targets in vemurafenib-resistant BRAFV600E melanoma. J Investig Dermatol. 2020;140(6):1253–65. https://doi.org/10.1016/j.jid.2019.11.014.

Article  CAS  PubMed  Google Scholar 

Radić M et al. Characterization of vemurafenib-resistant melanoma cell lines reveals novel hallmarks of targeted therapy resistance. Int J Mol Sci. 2022; 23(17). https://doi.org/10.3390/ijms23179910.

Caporali S, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49(3):1164–74. https://doi.org/10.3892/ijo.2016.3594.

Article  CAS  PubMed  Google Scholar 

Lee MA, et al. Novel three-dimensional cultures provide insights into thyroid cancer behavior. Endocr Relat Cancer. 2020;27(2):111–21. https://doi.org/10.1530/ERC-19-0374.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif