Clinical and functional characterization of a novel KCNJ11 (c.101G > A, p.R34H) mutation associated with maturity-onset diabetes mellitus of the young type 13

A. Bonnefond, J. Philippe, E. Durand et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS ONE 7(6), e37423 (2012)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Y. Kono, M. Horie, M. Takano et al. The properties of the Kir6.1-6.2 tandem channel co-expressed with SUR2A. Pflug. Arch. Eur. J. Physiol. 440(5), 692–698 (2000)

Article  CAS  Google Scholar 

D.L. Cook, C.N. Hales, Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311(5983), 271–273 (1984)

Article  CAS  PubMed  Google Scholar 

S.L. Shyng, C.G. Nichols, Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282(5391), 1138–1141 (1998)

Article  CAS  PubMed  Google Scholar 

P. Rorsman, F.M. Ashcroft, Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98(1), 117–214 (2018)

Article  CAS  PubMed  Google Scholar 

N. Inagaki, T. Gonoi, J.P.T. Clement et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270(5239), 1166–1170 (1995)

Article  CAS  PubMed  Google Scholar 

S. Haider, J.F. Antcliff, P. Proks, M.S. Sansom, F.M. Ashcroft, Focus on Kir6.2: a key component of the ATP-sensitive potassium channel. J. Mol. Cell. Cardiol. 38(6), 927–936 (2005)

Article  CAS  PubMed  Google Scholar 

M. Bründl, S. Pellikan, A. Stary-Weinzinger, Simulating PIP(2)-induced gating transitions in Kir6.2 channels. Front. Mol. Biosci. 8, 711975 (2021)

Article  PubMed  PubMed Central  Google Scholar 

E. De Franco, C. Saint-Martin, K. Brusgaard et al. Update of variants identified in the pancreatic β-cell K(ATP) channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum. Mutat. 41(5), 884–905 (2020)

Article  PubMed  PubMed Central  Google Scholar 

K. Shimomura, S.E. Flanagan, B. Zadek et al. Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism. EMBO Mol. Med. 1(3), 166–177 (2009)

Article  CAS  PubMed  PubMed Central  Google Scholar 

I. Giurgea, C. Bellanné-Chantelot, M. Ribeiro et al. Molecular mechanisms of neonatal hyperinsulinism. Horm. Res. 66(6), 289–296 (2006)

CAS  PubMed  Google Scholar 

S.E. Flanagan, A.M. Patch, D.J. Mackay et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 56(7), 1930–1937 (2007)

Article  CAS  PubMed  Google Scholar 

P. Tammaro, F. Ashcroft, The Kir6.2-F333I mutation differentially modulates KATP channels composed of SUR1 or SUR2 subunits. J. Physiol. 581(Pt 3), 1259–1269 (2007)

Article  CAS  PubMed  PubMed Central  Google Scholar 

B. He, X. Li, Z. Zhou, Continuous spectrum of glucose dysmetabolism due to the KCNJ11 gene mutation—case reports and review of the literature. J. Diab. 13(1), 19–32 (2021)

Article  CAS  Google Scholar 

Y. Chen, X. Hu, J. Cui, M. Zhao, H. Yao, A novel mutation KCNJ11 R136C caused KCNJ11-MODY. Diabetol. Metab. Syndr. 13(1), 91 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Ohkubo, M. Nagashima, Y. Naito et al. Genotypes of the pancreatic beta-cell K-ATP channel and clinical phenotypes of Japanese patients with persistent hyperinsulinaemic hypoglycaemia of infancy. Clin. Endocrinol. 62(4), 458–465 (2005)

Article  CAS  Google Scholar 

H. Ishihara, T. Asano, K. Tsukuda et al. Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia 36(11), 1139–1145 (1993)

Article  CAS  PubMed  Google Scholar 

F. Zhang, D. Ma, W. Zhao et al. Obesity-induced overexpression of miR-802 impairs insulin transcription and secretion. Nat. Commun. 11(1), 1822 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

K.M. Nkonge, D.K. Nkonge, T.N. Nkonge, The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin. Diab. Endocrinol. 6(1), 20 (2020)

Article  Google Scholar 

D.T. Broome, K.M. Pantalone, S.R. Kashyap, L.H. Philipson, Approach to the patient with MODY-monogenic diabetes. J. Clin. Endocrinol. Metab. 106(1), 237–250 (2021)

Article  PubMed  Google Scholar 

N.A. ElSayed, G. Aleppo, V.R. Aroda et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes-2023. Diabetes Care 46(Suppl 1), S19–s40 (2023)

Article  CAS  PubMed  Google Scholar 

R.F. Knopf, J.W. Conn, S.S. Fajans, J.C. Floyd, E.M. Guntsche, J.A. Rull, Plasma growth hormone response to intravenous administration of amino acids. J. Clin. Endocrinol. Metab. 25, 1140–1144 (1965)

Article  CAS  PubMed  Google Scholar 

R.B. Tattersall, S.S. Fajans, A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes 24(1), 44–53 (1975)

Article  CAS  PubMed  Google Scholar 

R. Aarthy, K. Aston-Mourney, A. Mikocka-Walus et al. Clinical features, complications and treatment of rarer forms of maturity-onset diabetes of the young (MODY)—a review. J. Diabetes Complications 35(1), 107640 (2021)

Article  CAS  PubMed  Google Scholar 

G. Maltoni, R. Franceschi, V. Di Natale, et al. Next generation sequencing analysis of MODY-X patients: a case report series. J. Pers. Med 12(10), 1613 (2022).

Article  PubMed  PubMed Central  Google Scholar 

P. Firdous, K. Nissar, S. Ali et al. Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front. Endocrinol. 9, 253 (2018)

Article  Google Scholar 

S.S. Fajans, G.I. Bell, MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care 34(8), 1878–1884 (2011)

Article  PubMed  PubMed Central  Google Scholar 

J.W. Kleinberger, K.C. Copeland, R.G. Gandica et al. Monogenic diabetes in overweight and obese youth diagnosed with type 2 diabetes: the TODAY clinical trial. Genet. Med. Off. J. Am. Coll. Med. Genet. 20(6), 583–590 (2018)

Google Scholar 

R.M. van Dam, B. Hoebee, J.C. Seidell, M.M. Schaap, T.W. de Bruin, E.J. Feskens, Common variants in the ATP-sensitive K+ channel genes KCNJ11 (Kir6.2) and ABCC8 (SUR1) in relation to glucose intolerance: population-based studies and meta-analyses. Diabet. Med. 22(5), 590–598 (2005)

Article  PubMed  Google Scholar 

A. Petersmann, M. Nauck, D. Müller-Wieland et al. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 126(7), 406–410 (2018)

Article  CAS  PubMed  Google Scholar 

O. El Shazly, M.M. Abou El Soud, D.M. El Mikkawy, I. El Ganzoury, A.M. Ibrahim, Endoscopic-assisted achilles tendon reconstruction with free hamstring tendon autograft for chronic rupture of achilles tendon: clinical and isokinetic evaluation. Arthroscopy 30(5), 622–628 (2014)

Article  PubMed  Google Scholar 

B.M. Shields, S. Hicks, M.H. Shepherd, K. Colclough, A.T. Hattersley, S. Ellard, Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53(12), 2504–2508 (2010)

Article  CAS  PubMed  Google Scholar 

G. Thanabalasingham, A. Pal, M.P. Selwood et al. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care 35(6), 1206–1212 (2012)

Article  CAS  PubMed  PubMed Central  Google Scholar 

H.Y. Aydogan, N. Gul, D.K. Demirci et al. Precision diagnosis of maturity-onset diabetes of the young with next-generation sequencing: findings from the MODY-IST study in adult patients. Omics 26(4), 218–235 (2022)

Article  CAS  PubMed  Google Scholar 

X. Song, Y. Cao, J. Ye, W. Dai, S. Zhang, S. Ye, A new mutation c.685G > A:p.E229K in the KCNJ11 gene: a case report of maturity-onset diabetes of the young13. Medicine 101(39), e30668 (2022)

Article  PubMed  PubMed Central  Google Scholar 

R.A. Studer, B.H. Dessailly, C.A. Orengo, Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem. J. 449(3), 581–594 (2013)

Article  CAS  PubMed  Google Scholar 

S.E. Flanagan, A.M. Patch, S. Ellard, Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet. Test. Mol. Biomark. 14(4), 533–537 (2010)

Article  CAS  Google Scholar 

P.C. Ng, S. Henikoff, SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31(13), 3812–3814 (2003)

留言 (0)

沒有登入
gif