Anti-inflammatory, antioxidant and anti-mitophagy effects of trans sodium crocetinate on experimental autoimmune encephalomyelitis in BALB/C57 mice

Acharjee S, Nayani N, Tsutsui M, Hill MN, Ousman SS, Pittman QJ (2013) Altered cognitive-emotional behavior in early experimental autoimmune encephalitis–cytokine and hormonal correlates. Brain Behav Immun 33:164–172. https://doi.org/10.1016/j.bbi.2013.07.003

Article  CAS  PubMed  Google Scholar 

Adelmann M, Wood J, Benzel I, Fiori P, Lassmann H, Matthieu JM, Gardinier M, Dornmair K, Linington C (1995) The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat. J Neuroimmunol 63:17–27. https://doi.org/10.1016/0165-5728(95)00124-7

Article  CAS  PubMed  Google Scholar 

Ahmad AS, Ansari MA, Ahmad M, Saleem S, Yousuf S, Hoda MN, Islam F (2005) Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 81:805–813. https://doi.org/10.1016/j.pbb.2005.06.007

Article  CAS  PubMed  Google Scholar 

Akbari-Fakhrabadi M, Najafi M, Mortazavian S, Rasouli M, Memari AH, Shidfar F (2019) Effect of saffron (Crocus sativus L.) and endurance training on mitochondrial biogenesis, endurance capacity, inflammation, antioxidant, and metabolic biomarkers in Wistar rats. J Food Biochem 43:e12946. https://doi.org/10.1111/jfbc.12946

Article  CAS  PubMed  Google Scholar 

Alavizadeh SH, Hosseinzadeh H (2014) Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 64:65–80. https://doi.org/10.1016/j.fct.2013.11.016

Article  CAS  PubMed  Google Scholar 

Arano T, Imai Y (2015) Mitophagy regulated by the PINK1-Parkin pathway. Cell Death-Autophagy Apoptosis Necrosis 113–131. https://doi.org/10.5772/61284

Ashrafi G, Schwarz T (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42. https://doi.org/10.1038/cdd.2012.81

Bathaie SZ, Mousavi SZ (2010) New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 50:761–786. https://doi.org/10.1080/10408390902773003

Article  CAS  PubMed  Google Scholar 

Batoulis H, Recks MS, Addicks K, Kuerten S (2011) Experimental autoimmune encephalomyelitis–achievements and prospective advances. Apmis 119:819–830. https://doi.org/10.1111/j.1600-0463.2011.02794.x

Article  CAS  PubMed  Google Scholar 

Berkovich R (2016) Treatment of acute relapses in multiple sclerosis. Translational Neuroimmunol Multiple Scler 307–326. https://doi.org/10.1016/B978-0-12-801914-6.00024-6

Broadwater L, Pandit A, Clements R, Azzam S, Vadnal J, Sulak M, Yong VW, Freeman EJ, Gregory RB, McDonough J (2011) Analysis of the mitochondrial proteome in multiple sclerosis cortex. Acta Mol Basis Dis 1812:630–641. https://doi.org/10.1016/j.bbadis.2011.01.012

Cai J, Yi FF, Bian ZY, Shen DF, Yang L, Yan L, Tang QZ, Yang XC, Li H (2009) Crocetin protects against cardiac hypertrophy by blocking MEK-ERK1/2 signalling pathway. J Cell Mol Med 13:909–925. https://doi.org/10.1111/j.1582-4934.2008.00620.x

Article  CAS  PubMed  Google Scholar 

Chang G, Chen Y, Zhang H, Zhou W (2019) Trans sodium crocetinate alleviates ischemia/reperfusion-induced myocardial oxidative stress and apoptosis via the SIRT3/FOXO3a/SOD2 signaling pathway. Int Immunopharmacol 71:361–371. https://doi.org/10.1016/j.intimp.2019.03.056

Article  CAS  PubMed  Google Scholar 

Choi BY, Jang BG, Kim JH, Seo J-N, Wu G, Sohn M, Chung TN, Suh SW (2013) Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model. Neurobiol Dis 54:382–391. https://doi.org/10.1016/j.nbd.2013.01.012

Article  CAS  PubMed  Google Scholar 

Colapietro A, Mancini A, D’Alessandro AM, Festuccia C (2019) Crocetin and crocin from saffron in cancer chemotherapy and chemoprevention. Curr Med Chem Anticancer Agents 19:38–47. https://doi.org/10.2174/1871520619666181231112453

Article  CAS  Google Scholar 

Cossu D, Yokoyama K, Sato S, Noda S, Sechi LA, Hattori N (2021a) PARKIN modifies peripheral immune response and increases neuroinflammation in active experimental autoimmune encephalomyelitis (EAE). J Neuroimmunol 359:577694. https://doi.org/10.1016/j.jneuroim.2021.577694

Article  CAS  PubMed  Google Scholar 

Cossu D, Yokoyama K, Sechi LA, Hattori N (2021b) Potential of PINK1 and PARKIN proteins as biomarkers for active multiple sclerosis: a Japanese Cohort Study. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.681386

Dasgupta A, Zheng J, Perrone-Bizzozero NI, Bizzozero OA (2013) Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis. ASN Neuro 5:e00111. https://doi.org/10.1042/AN20120088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Day MJ (2005) Histopathology of EAE. Experimental models of multiple sclerosis Springer, pp 25–43

Deng J, Xiong L, Zuo Z (2015) Trans-sodium crocetinate provides neuroprotection against cerebral ischemia and reperfusion in obese mice. J Neurosci Res 93:615–622. https://doi.org/10.1002/jnr.23522

Article  CAS  PubMed  Google Scholar 

Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, Noorbakhsh F, Michalak M, Power C (2011) Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J Immunol 187:4788–4799. https://doi.org/10.4049/jimmunol.1004111

Dong N, Dong Z, Chen Y, Gu X (2020) Crocetin alleviates inflammation in MPTP-Induced Parkinson’s Disease models through improving mitochondrial functions. Parkinson’s Disease 2020(9864370). https://doi.org/10.1155/2020/9864370

Ebrahimzadeh A, Yousefi Moghadam S, Rahimi H, Motaghinejad M, Motevalian M, Safari S, Abbasi Mesrabadi M (2019) Crocin acts as a neuroprotective mediator against methylphenidate–induced neurobehavioral and neurochemical sequelae: possible role of the CREB-BDNF signaling pathway. Acta Neurobiol Exp (Wars) 79(4):352–366. https://doi.org/10.21307/ane-2019-033

Erhardt W, Hebestedt A, Aschenbrenner G, Pichotka B, Blümel G (1984) A comparative study with various anesthetics in mice (pentobarbitone, ketamine-xylazine, carfentanyl-etomidate). Res Exp Med 184:159–169. https://doi.org/10.1007/BF01852390

Escribano J, Alonso GL, Coca-Prados M, Fernández JA (1996) Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett 100:23–30. https://doi.org/10.1016/0304-3835(95)04067-6

Article  CAS  PubMed  Google Scholar 

Escribano BM, Medina-Fernández FJ, Aguilar-Luque M, Agüera E, Feijoo M, Garcia-Maceira FI, Lillo R, Vieyra-Reyes P, Giraldo AI, Luque E (2017) Lipopolysaccharide binding protein and oxidative stress in a multiple sclerosis model. Neurotherapeutics 14:199–211. https://doi.org/10.1007/s13311-016-0480-0

Article  CAS  PubMed  Google Scholar 

Eteghadi MR, Nasehi M, Vaseghi S, Hesami–Tackallou S (2021) The effect of Crocin on TFAM and PGC–1α expression and Catalaseand Superoxide dismutase activities following cholestasis–inducedneuroinflammation in the striatum of male Wistar rats. Metab Brain Dis 36(7):1791–1801. https://doi.org/10.1007/s11011-021-00748-x

Feng P, Li Q, Liu L, Wang S, Wu Z, Tao Y, Huang P, Wang P (2022) Crocetin prolongs recovery period of DSS-induced colitis via altering intestinal microbiome and increasing intestinal permeability. Int J Mol Sci 23:3832. https://doi.org/10.3390/ijms23073832

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fletcher JM, Lalor S, Sweeney C, Tubridy N, Mills K (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162:1–11. https://doi.org/10.1111/j.1365-2249.2010.04143.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giatti S, Boraso M, Abbiati F, Ballarini E, Calabrese D, Santos-Galindo M, Rigolio R, Pesaresi M, Caruso D, Viviani B (2013) Multimodal analysis in acute and chronic experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 8:238–250. https://doi.org/10.1007/s11481-012-9385-9

Article  PubMed  Google Scholar 

Gibson-Corley KN, Olivier AK, Meyerholz DK (2013) Principles for valid histopathologic scoring in research. Vet Pathol 50:1007–1015. https://doi.org/10.1177/0300985813485099

Article  CAS  PubMed  Google Scholar 

Gibson-Corley KN, Boyden AW, Leidinger MR, Lambertz AM, Ofori-Amanfo G, Naumann PW, Goeken JA, Karandikar NJ (2016) A method for histopathological study of the multifocal nature of spinal cord lesions in murine experimental autoimmune encephalomyelitis. Peer J 4:e1600. https://doi.org/10.7717/peerj.1600

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonçalves FB, Morais VA (2021) PINK1: a bridge between mitochondria and Parkinson’s disease. Life 11:371. https://doi.org/10.3390/life11050371

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grigoriadis N, Van Pesch V (2015) A basic overview of multiple sclerosis immunopathology. Eur J Neurol 22:3–13. https://doi.org/10.1111/ene.12798

Article  PubMed  Google Scholar 

Hashemi M, Hosseinzadeh H (2019) A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 130:44–60. https://doi.org/10.1016/j.fct.2019.05.017

Article  CAS  PubMed  Google Scholar 

Hassanpour M, Cheraghi O, Laghusi D, Nouri M, Panahi Y (2020) The relationship between ANT1 and NFL with autophagy and mitophagy markers in patients with multiple sclerosis. J Clin Neurosci 78:307–312. https://doi.org/10.1016/j.jocn.2020.04.122

Article  CAS  PubMed  Google Scholar 

Hosseini A, Razavi BM, Hosseinzadeh H (2018) Pharmacokinetic properties of saffron and its active components. Eur J Drug Metab Pharmacokinet 43:383–390. https://doi.org/10.1007/s13318-017-0449-3

Article  CAS  PubMed  Google Scholar 

Hosseinzadeh H, Younesi HM (2002) Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol Toxicol 2:1–8. https://doi.org/10.1186/1471-2210-2-7

Article  Google Scholar 

Huang WJ, Chen WW, Zhang X (2017) Multiple sclerosis: pathology, diagnosis and treatments. Exp Ther Med 13:3163–3166. https://doi.org/10.3892/etm.2017.4410

Khoshandam A, Razavi BM, Hosseinzadeh H (2022) Interaction of saffron and its constituents with Nrf2 signaling pathway: a review. Iran J Basic Med Sci 25. https://doi.org/10.22038/IJBMS.2022.61986.13719

Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H (2017) An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 133:13–24. https://doi.org/10.1007/s00401-016-1653-y

Kurschus F (2015) T cell mediated pathogenesis in EAE: molecular mechanisms. Biomed J 38. https://doi.org/10.4103/2319-4170.155590

Article  Google Scholar 

Kuznetsov AV, Margreiter R (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 10:1911–1929. https://doi.org/10.3390/ijms10041911

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif