Mechanism of efferocytosis in atherosclerosis

Ley K, Miller YI, Hedrick CC (2011) Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol 31(7):1506–1516

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golforoush P, Yellon DM, Davidson SM (2020) Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol 115(6). https://doi.org/10.1007/s00395-020-00829-5

Boada-Romero E et al (2020) The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 21(7):398–414

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahman MS, Woollard K (2017) Atherosclerosis. Adv Exp Med Biol 1003:121–144

Article  CAS  PubMed  Google Scholar 

Schrijvers DM et al (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25(6):1256–1261

Article  CAS  PubMed  Google Scholar 

Penberthy KK, Lysiak JJ, Ravichandran KS (2018) RethinkingPhagocytes: Clues from the Retina and Testes. Trends Cell Biol 28(4):317–327

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans AL et al (2017) Antagonistic coevolution of MER tyrosine kinase expression and function. Mol Biol Evol 34(7):1613–1628

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parnaik R, Raff MC, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10(14):857–860

Article  CAS  PubMed  Google Scholar 

Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16(9):907–917

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu J et al (2019) Efficient engulfment of necroptotic and pyroptotic cells by nonprofessional and professional phagocytes. Cell Discov 5:39

Article  PubMed  PubMed Central  Google Scholar 

Morioka S, Maueroder C, Ravichandran KS (2019) Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50(5):1149–1162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medina CB, Ravichandran KS (2016) Do not let death do us part: “find-me” signals in communication between dying cells and the phagocytes. Cell Death Differ 23(6):979–989

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medina CB et al (2020) Metabolites released from apoptotic cells act as tissue messengers. Nature 580(7801):130–135

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bournazou I et al (2009) Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest 119(1):20–32

CAS  PubMed  Google Scholar 

Lee M et al (2018) Tissue-specific role of CX(3)CR1 expressing immune cells and their relationships with human disease. Immune Netw 18(1):e5

Article  PubMed  PubMed Central  Google Scholar 

Truman LA et al (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112(13):5026–5036

Article  CAS  PubMed  Google Scholar 

Lauber K et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113(6):717–730

Article  CAS  PubMed  Google Scholar 

Peter C et al (2012) Release of lysophospholipid “find-me” signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity 45(8):568–573

Article  CAS  PubMed  Google Scholar 

Apostolakis S, Spandidos D (2013) Chemokines and atherosclerosis: focus on the CX3CL1/CX3CR1 pathway. Acta Pharmacol Sin 34(10):1251–1256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu Y et al (2015) Defective apical extrusion signaling contributes to aggressive tumor hallmarks. Elife 4:e04069

Article  PubMed  PubMed Central  Google Scholar 

Matsumoto T, Kobayashi T, Kamata K (2007) Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 14(30):3209–3220

Article  CAS  PubMed  Google Scholar 

Ferrari D et al (2015) Purinergic signaling in atherosclerosis. Trends Mol Med 21(3):184–192

Article  CAS  PubMed  Google Scholar 

Zhao X, Kruzel M, Aronowski J (2021) Lactoferrin and hematoma detoxification after intracerebral hemorrhage. Biochem Cell Biol 99(1):97–101

Article  CAS  PubMed  Google Scholar 

Chen C et al (2023) The role of lactoferrin in atherosclerosis. Biometals 36(3):509–519

Article  PubMed  Google Scholar 

da Rocha GHO et al (2019) Control of expression and activity of peroxisome proliferated-activated receptor gamma by Annexin A1 on microglia during efferocytosis. Cell Biochem Funct 37(7):560–568

Article  PubMed  Google Scholar 

Li YZ et al (2022) Annexin A protein family in atherosclerosis. Clin Chim Acta 531:406–417

Article  CAS  PubMed  Google Scholar 

Frasch SC et al (2011) Signaling via macrophage G2A enhances efferocytosis of dying neutrophils by augmentation of Rac activity. J Biol Chem 286(14):12108–12122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui X et al (2021) The G2A receptor deficiency aggravates atherosclerosis in rats by regulating macrophages and lipid metabolism. Front Physiol 12:659211

Article  PubMed  PubMed Central  Google Scholar 

Barnawi J et al (2017) Reduced DNA methylation of sphingosine-1 phosphate receptor 5 in alveolar macrophages in COPD: a potential link to failed efferocytosis. Respirology 22(2):315–321

Article  PubMed  Google Scholar 

Birge RB et al (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 23(6):962–978

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima Y et al (2019) Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J Clin Invest 129(5):2164

Article  PubMed  PubMed Central  Google Scholar 

Khatana C et al (2020) Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev 2020:5245308

Article  PubMed  PubMed Central  Google Scholar 

Tao H et al (2015) Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis. J Lipid Res 56(8):1449–1460

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima Y et al (2016) CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536(7614):86–90

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caligiuri G (2020) CD31 as a therapeutic target in atherosclerosis. Circ Res 126(9):1178–1189

Article  CAS  PubMed  Google Scholar 

Manta CP et al (2022) Targeting of scavenger receptors stabilin-1 and stabilin-2 ameliorates atherosclerosis by a plasma proteome switch mediating monocyte/macrophage suppression. Circulation 146(23):1783–1799

Article  CAS  PubMed  Google Scholar 

Lee W et al (2018) Macrophagic stabilin-1 restored disruption of vascular integrity caused by sepsis. Thromb Haemost 118(10):1776–1789

Article  PubMed  Google Scholar 

Foks AC et al (2016) Blockade of Tim-1 and Tim-4 enhances atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 36(3):456–465

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif