High sugar consumption for seven days in adult mice increased blood glucose variability, induced an anxiolytic effect and triggered oxidative stress in cerebral cortex

Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

Article  CAS  PubMed  Google Scholar 

Beauchamp C, Fridovich I (1971) Assay of superoxide dismutase. Anal Biochem 44:276–287

Article  CAS  PubMed  Google Scholar 

Beilharz JE, Maniam J, Morris MJ (2014) Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats. Brain Behav Immun 37:134–141. https://doi.org/10.1016/j.bbi.2013.11.016

Article  CAS  PubMed  Google Scholar 

Beilharz JE, Maniam J, Morris MJ (2016) Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation. Behav Brain Res 306:1–7. https://doi.org/10.1016/j.bbr.2016.03.018

Article  CAS  PubMed  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  CAS  PubMed  Google Scholar 

Camacho-Castillo L, Phillips-Farfán BV, Rosas-Mendoza G, Baires-Lopez A et al (2021) Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: Effect of AMPK activation. Sci Rep 11(1):19547. https://doi.org/10.1038/s41598-021-98983-w

Article  CAS  PubMed Central  PubMed  Google Scholar 

Casetta I, Govoni V, Granieri E (2005) Oxidative stress, antioxidants and neurodegenerative diseases. Curr Pharm Design 11(16):2033–2052. https://doi.org/10.2174/1381612054065729

Article  CAS  Google Scholar 

Cigliano L, Spagnuolo MS, Crescenzo R, Cancelliere R, Iannotta L, Mazzoli A et al (2018) Short-term fructose feeding induces inflammation and oxidative stress in the hippocampus of young and adult rats. Mol Neurobiol 55:2869–2883. https://doi.org/10.1007/s12035-017-0518-2

Article  CAS  PubMed  Google Scholar 

De la Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 9(2):167–181. https://doi.org/10.3233/JAD-2006-9209

Article  PubMed  Google Scholar 

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

Article  CAS  PubMed  Google Scholar 

Freeman CR, Zehra A, Ramirez V, Wiers CE, Volkow ND, Wang GJ (2018) Impact of sugar on the body, brain, and behavior. Front Biosci (Landmark Edition) 23(12):2255–2266. https://doi.org/10.2741/4704

Gancheva S, Galunska B, Zhelyazkova-Savova M (2017) Diets rich in saturated fat and fructose induce anxiety and depression‐like behaviours in the rat: is there a role for lipid peroxidation? Int J Exp Pathol 98(5):296–306. https://doi.org/10.1111/iep.12254

Article  CAS  PubMed Central  PubMed  Google Scholar 

Geijselaers SL, Sep SJ, Stehouwer CD, Biessels GJ (2015) Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. Lancet Diabetes Endocrinol 3(1):75–89. https://doi.org/10.1016/S2213-8587(14)70148-2

Article  CAS  PubMed  Google Scholar 

Habig WH, Pabst MJ, Jakoby WB, Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22): 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

Hansen MK, Taishi P, Chen Z, Krueger JM (1998) Cafeteria feeding induces interleukin-1β mRNA expression in rat liver and brain. Am J Physiology-Regulatory Integr Comp Physiol 274(6):R1734–R1739. https://doi.org/10.1152/ajpregu.1998.274.6.R1734

Article  CAS  Google Scholar 

Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY (2019) Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep 9(1):840. https://doi.org/10.1038/s41598-018-37215-0

Article  CAS  PubMed Central  PubMed  Google Scholar 

Jørgensen BP, Hansen JT, Krych L, Larsen C, Klein AB, Nielsen DS et al (2014) A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice. PLoS ONE 9(8):e103398. https://doi.org/10.1371/journal.pone.0103398

Article  CAS  Google Scholar 

Larqué C, Velasco M, Navarro-Tableros V, Duhne M, Aguirre J et al (2011) Early endocrine and molecular changes in metabolic syndrome models. IUBMB Life 63(10):831–839. https://doi.org/10.1002/iub.544

Article  CAS  PubMed  Google Scholar 

Leffa DD, Valvassori SS, Varela RB, Lopes-Borges J, Daumann F, Longaretti LM et al (2015) Effects of palatable cafeteria diet on cognitive and noncognitive behaviors and brain neurotrophins’levels in mice. Metab Brain Dis 30:1073–1082. https://doi.org/10.1007/s11011-015-9682-0

Article  CAS  PubMed  Google Scholar 

Li X, Song D, Leng SX (2015) Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging 549–560. https://doi.org/10.2147/CIA.S74042

Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92:180–185. https://doi.org/10.1007/BF00177912

Article  CAS  PubMed  Google Scholar 

Liu L, Volpe SL, Ross JA, Grimm JA, Van Bockstaele EJ, Eisen HJ (2022) Dietary sugar intake and risk of Alzheimer’s disease in older women. Nutr Neurosci 25(11):2302–2313. https://doi.org/10.1080/1028415X.2021.1959099

Article  CAS  PubMed  Google Scholar 

Lopes A, Vilela TC, Taschetto L, Vuolo F, Petronilho F, Dal-Pizzol F et al (2014) Evaluation of the effects of fructose on oxidative stress and inflammatory parameters in rat brain. Mol Neurobiol 50:1124–1130. https://doi.org/10.1007/s12035-014-8676-y

Article  CAS  PubMed  Google Scholar 

Martinez M, Santamarina J, Pavesi A, Musso C et al (2021) Glycemic variability and cardiovascular disease in patients with type 2 diabetes. BMJ Open Diabetes Res Care 9(1):e002032. https://doi.org/10.1136/bmjdrc-2020-002032

Article  PubMed Central  PubMed  Google Scholar 

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M (2018) DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci 21(9):1281–1289. https://doi.org/10.1038/s41593-018-0209-y

Article  CAS  PubMed  Google Scholar 

Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597. https://doi.org/10.1016/j.tins.2013.07.00

Article  CAS  PubMed Central  PubMed  Google Scholar 

Miao H, Chen K, Yan X, Chen F (2021) Sugar in Beverage and the risk of incident dementia, Alzheimer’s disease and stroke: a prospective cohort study. J Prev Alzheimer’s Disease 8:188–193. https://doi.org/10.14283/jpad.2020.62

Murphy M, Mercer JG (2013) Diet-regulated anxiety. International journal of endocrinology, 2013. https://doi.org/10.1155/2013/701967

Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60(8):759–767. https://doi.org/10.1093/jnen/60.8.759

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

Article  CAS  PubMed  Google Scholar 

Ohland CL, Pankiv E, Baker G, Madsen KL (2016) Western diet-induced anxiolytic effects in mice are associated with alterations in tryptophan metabolism. Nutr Neurosci 19(8):337–345. https://doi.org/10.1179/1476830515Y.0000000034

Article  CAS  PubMed  Google Scholar 

Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK et al (2017) Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology 42(8):1715–1728. https://doi.org/10.1038/npp.2017.56

Article  PubMed Central  PubMed  Google Scholar 

Patki G, Solanki N, Atrooz F, Allam F, Salim S (2013) Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res 1539:73–86. https://doi.org/10.1016/j.brainres.2013.09.033

Article  CAS  PubMed Central  PubMed  Google Scholar 

Pranprawit A, Wolber FM, Heyes JA, Molan AL, Kruger MC (2013) Short-term and long‐term effects of excessive consumption of saturated fats and/or sucrose on metabolic variables in Sprague Dawley rats: a pilot study. J Sci Food Agric 93(13):3191–3197. https://doi.org/10.1002/jsfa.6240

Article  CAS  PubMed  Google Scholar 

Prasad A, Prasad C (1996) Short-term consumption of a diet rich in fat decreases anxiety response in adult male rats. Physiol Behav 60(3):1039–1042

Article  CAS  PubMed  Google Scholar 

Quincozes-Santos A, Bobermin LD, de Assis AM, Goncalves CA, Souza DO (2017) Fluctuations in glucose levels induce glial toxicity with glutamatergic, oxidative and inflammatory implications. Biochim Biophys Acta (BBA)-Mol Basis Dis 1863(1):1–14. https://doi.org/10.1016/j.bbadis.2016.09.013

Ramanathan M, Jaiswal AK, Bhattacharya SK (1999) Superoxide dismutase, catalase and glutathione peroxidase activities in the brain of streptozotocin induced diabetic rats. Indian J Exp Biol 37:182–183

Rao CH, Liu L, Gao J, Du ZH, Gao C (2022) Establishment of blood glucose control model in diabetic mice. Int J Ophthalmol 15(12):1908. https://doi.org/10.18240/ijo.2022.12.03

Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360(1):201–205. https://doi.org/10.1124/jpet.116.237503

Article  CAS  PubMed Central  PubMed  Google Scholar 

Solleiro-Rebolledo D, Roldán-Roldán G, Diaz D, Velasco M, Larqué C, Rico-Rosillo G et al (2017) Increased anxiety-like behavior is associated with the metabolic syndrome in non-stressed rats. PLoS ONE 12(5):e0176554. https://doi.org/10.1371/journal.pone.0176554

Article 

留言 (0)

沒有登入
gif