Ferulago Angulata methanolic extract ameliorates scopolamine-induced memory impairment through the inhibition of hippocampal monoamine oxidase activity

Adedayo BC, Jesubowale OS, Adebayo AA, Oboh G (2021) Effect of Andrographis paniculata leaves extract on neurobehavioral and biochemical indices in scopolamine-induced amnesic rats. J Food Biochem 45(3):e13280

Akbari S, Soodi M, Hajimehdipoor H, Ataei N (2019) Protective effects of Sanguisorba minor and ferulago angulata total extracts against beta-amyloid induced cytotoxicity and oxidative stress in cultured cerebellar granule neurons. J Herbmed Pharmacol 8(3):248–255

Article  CAS  Google Scholar 

Ameen BAH (2014) Phytochemical study and cytotoxic activity of Ferulago Angulata (Schlecht) Boiss, from Kurdistan-region of Iraq. IJIRAE 1(9):1–5

Google Scholar 

Anwar MM (2022) Oxidative stress-A direct bridge to central nervous system homeostatic dysfunction and Alzheimer’s disease. Cell Biochem Funct 40(1):17–27. https://doi.org/10.1002/cbf.3673

Article  CAS  PubMed  Google Scholar 

Badalamenti N, Ilardi V, Rosselli S, Bruno M (2021) The ethnobotany, phytochemistry and biological properties of genus ferulago– A review [Review]. J Ethnopharmacol 274:114050. https://doi.org/10.1016/j.jep.2021.114050

Article  CAS  PubMed  Google Scholar 

Baek SC, Kang MG, Park JE, Lee JP, Lee H, Ryu HW, Park CM, Park D, Cho ML, Oh SR, Kim H (2019) Osthenol, a prenylated coumarin, as a monoamine oxidase a inhibitor with high selectivity. Bioorg Med Chem Lett 29(6):839–843. https://doi.org/10.1016/j.bmcl.2019.01.016

Article  CAS  PubMed  Google Scholar 

Basu M, Mayana K, Xavier S, Balachandran S, Mishra N (2016) Effect of scopoletin on monoamine oxidases and brain amines. Neurochem Int 93:113–117. https://doi.org/10.1016/j.neuint.2016.01.001

Article  CAS  PubMed  Google Scholar 

Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG (2021) Role of monoamine oxidase activity in alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules 26(12). Article 3724. https://doi.org/10.3390/molecules26123724

Blokland A (2022) Cholinergic models of memory impairment in animals and man: scopolamine vs. biperiden [Review]. Behav Pharmacol 33(4):231–237. https://doi.org/10.1097/FBP.0000000000000670

Article  CAS  PubMed  Google Scholar 

Borroni E, Bohrmann B, Grueninger F, Prinssen E, Nave S, Loetscher H, Chinta SJ, Rajagopalan S, Rane A, Siddiqui A, Ellenbroek B, Messer J, Pähler A, Andersen JK, Wyler R, Cesura AM (2017) Sembragiline: a novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s Disease. J Pharmacol Exp Ther 362(3):413–423. https://doi.org/10.1124/jpet.117.241653

Article  CAS  PubMed  Google Scholar 

Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60(13–14):1527–1533

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

Article  CAS  PubMed  Google Scholar 

Capra JC, Cunha MP, Machado DG, Zomkowski AD, Mendes BG, Santos AR, Pizzolatti MG, Rodrigues AL (2010) Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems. Eur J Pharmacol 643(2–3):232–238. https://doi.org/10.1016/j.ejphar.2010.06.043

Article  CAS  PubMed  Google Scholar 

Chen ZR, Huang JB, Yang SL, Hong FF (2022) Role of cholinergic signaling in Alzheimer’s disease. Molecules 27(6). Article 1816.https://doi.org/10.3390/molecules27061816

Choudhury S, Vellapandian C (2019) Alzheimer’s disease pathophysiology and its implications [Review]. Res J Pharm Technol 12(4):2045–2048. https://doi.org/10.5958/0974-360X.2019.00338.X

Article  Google Scholar 

Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju Y-H (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22(3):296–302

Article  CAS  PubMed  Google Scholar 

Dos Santos Passos C, Soldi TC, Abib T, Anders Apel R, Simões-Pires M, Marcourt C, Gottfried L, C., Henriques AT (2013) Monoamine oxidase inhibition by monoterpene indole alkaloids and fractions obtained from Psychotria suterella and Psychotria laciniata [Article]. J Enzyme Inhib Med Chem 28(3):611–618. https://doi.org/10.3109/14756366.2012.666536

Article  CAS  PubMed  Google Scholar 

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

Article  CAS  PubMed  Google Scholar 

Emilsson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE (2002) Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients [Article]. Neurosci Lett 326(1):56–60. https://doi.org/10.1016/S0304-3940(02)00307-5

Article  CAS  PubMed  Google Scholar 

Faldu KG, Patel SS, Shah JS (2023) Celastrus Paniculatus oil ameliorates NF-KB mediated neuroinflammation and synaptic plasticity in the scopolamine-induced cognitive impairment rat model [Article]. Metab Brain Dis 38(4):1405–1419. https://doi.org/10.1007/s11011-023-01186-7

Article  CAS  PubMed  Google Scholar 

Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C, Pallàs M (2021) The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: from antioxidant to epigenetic therapy. Ageing Res Rev 67:101271. https://doi.org/10.1016/j.arr.2021.101271

Article  CAS  PubMed  Google Scholar 

Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, Keller E, Horváth MC, Nag S, Hermecz I (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11 C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int 58(1):60–68

Article  PubMed  Google Scholar 

Ionescu-Tucker A, Cotman CW (2021) Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging 107:86–95. https://doi.org/10.1016/j.neurobiolaging.2021.07.014

Article  CAS  PubMed  Google Scholar 

Jalilian F, Moieni-Arya M, Hosseinzadeh L, Shokoohinia Y (2022) Oxypeucedanin and isoimperatorin extracted from Prangos Ferulacea (L.) Lindl protect PC12 pheochromocytoma cells from oxidative stress and apoptosis induced by doxorubicin. Res Pharm Sci 17(1):12

Article  PubMed  Google Scholar 

Javed MA, Jan MS, Shbeer AM, Al-Ghorbani M, Rauf A, Wilairatana P, Mannan A, Sadiq A, Farooq U, Rashid U (2023) Evaluation of pyrimidine/pyrrolidine-sertraline based hybrids as multitarget anti-alzheimer agents: In-vitro, in-vivo, and computational studies. Biomed Pharmacother 159:114239. https://doi.org/10.1016/j.biopha.2023.114239

Article  CAS  PubMed  Google Scholar 

Lee J-S, Kim H-G, Han J-M, Kim D-W, Yi M-H, Son S-W, Kim Y-A, Lee J-S, Choi M-K, Son C-G (2014) Ethanol extract of Astragali Radix and Salviae Miltiorrhizae Radix, Myelophil, exerts anti-amnesic effect in a mouse model of scopolamine-induced memory deficits. J Ethnopharmacol 153(3):782–792

Article  CAS  PubMed  Google Scholar 

Lorigooini Z, Koravand M, Haddadi H, Rafieian-Kopaei M, Shirmardi HA, Hosseini Z (2019) A review of botany, phytochemical and pharmacological properties of Ferulago Angulata. Toxin Rev 38(1):13–20

Article  CAS  Google Scholar 

Manzoor S, Hoda N (2020) A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review. Eur J Med Chem 206 Article 112787. https://doi.org/10.1016/j.ejmech.2020.112787

Mathew B, Suresh J, Mathew EG, Parasuraman R, Abdulla N (2014) Plant secondary metabolites- potent inhibitors of Monoamine Oxidase isoforms. Cent Nerv Syst Agents Med Chem 14(1):28–33. https://doi.org/10.2174/1871524914666140826111930

Article  CAS  PubMed  Google Scholar 

Mirzapour S, Rafieirad M, Rouhi L (2015) Hydroalcoholic extract of ferulago angulata improves memory and pain in brain hypoperfusion ischemia in rats. Jundishapur J Nat Pharm Prod, 10(1)

Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

Article  CAS  PubMed  Google Scholar 

Olsen M, Aguilar X, Sehlin D, Fang XT, Antoni G, Erlandsson A, Syvänen S (2018) Astroglial responses to amyloid-Beta progression in a mouse model of Alzheimer’s Disease. Mol Imaging Biol 20(4):605–614. https://doi.org/10.1007/s11307-017-1153-z

Article  CAS  PubMed  Google Scholar 

Rahman MS, Uddin MS, Rahman MA, Samsuzzaman M, Behl T, Hafeez A, Perveen A, Barreto GE, Ashraf GM (2021) Exploring the role of monoamine oxidase activity in aging and alzheimer’s disease [Review]. Curr Pharm Design 27(38):4017–4029. https://doi.org/10.2174/1381612827666210612051713

Article  CAS  Google Scholar 

Rebe RN, Lembe JT, Nyayi SDG, Ngatanko HHA, Wado EK, Wanda K, Ndinteh GJM, Njamen DT, Zingue D, S., Foyet HS (2023) Estrogenic and anti-amnesic potential of Millettia griffoniana Baill. (Fabaceae) ethanolic extract on scopolamine-induced memory impairment in ovariectomized Wistar rats [Article]. J Ethnopharmacol 309. Article 116325. https://doi.org/10.1016/j.jep.2023.116325

San Tang K (2019) The cellular and molecular processes associated with scopolamine-induced memory deficit: a model of Alzheimer’s biomarkers. Life Sci 233:116695

Article  Google Scholar 

Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, Bogdanovic N, Winblad B, Sandebring-Matton A, Frykman S, Tjernberg LO (2017) Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimer’s Res Therapy 9(1). Article 57. https://doi.org/10.1186/s13195-017-0279-1

Seema B, Amaresh KR, Anil G (2023) Oxidative stress: a target to treat Alzheimer’s disease and stroke. Neurochem Int 165:105509. https://doi.org/10.1016/j.neuint.2023.105509

Sepand MR, Soodi M, Hajimehdipoor H, Soleimani M, Sahraei E (2013) Comparison of neuroprotective effects of Melissa officinalis Total Extract and its acidic and non-acidic fractions against a β-Induced toxicity. Iran J Pharm Res 12(2):415–423

PubMed  PubMed Central  Google Scholar 

Shamsi M, Soodi M, Hajimehdipoor H, Ghazanfari A (2021a) Study of monoamine oxidase inhibitory effects of seven Iranian medicinal plant extracts [Original article]. J Rep Pharm Sci 10(2):187–193. https://doi.org/10.4103/jrptps.JRPTPS_23_20

Article  CAS  Google Scholar 

Shamsi M, Soodi M, Shahbazi S, Omidi A (2021b) Effect of Acetamiprid on spatial memory and hippocampal glutamatergic system. Environ Sci Pollut Res Int 28(22):27933–27941. https://doi.org/10.1007/s11356-020-12314-6

Article  CAS  PubMed 

留言 (0)

沒有登入
gif