LncRNA Gm15834 Aggravates Cardiac Hypertrophy by Interacting with Sam68 and Activating NF-κB Mediated Inflammation

Heron M, Anderson RN. Changes in the leading cause of death: recent patterns in heart disease and cancer mortality. NCHS Data Brief. 2016;(254):1–8.

Sabbah HN. Silent disease progression in clinically stable heart failure. Eur J Heart Fail. 2017;19:469–78. https://doi.org/10.1002/ejhf.705.

Article  PubMed  Google Scholar 

Xiong Z, Sun G, Zhu C, et al. Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling. Eur J Pharmacol. 2010;649:277–84. https://doi.org/10.1016/j.ejphar.2010.09.018.

Article  CAS  PubMed  Google Scholar 

Ma Z, Qin X, Zhong X, et al. Flavine adenine dinucleotide inhibits pathological cardiac hypertrophy and fibrosis through activating short chain acyl-CoA dehydrogenase. Biochem Pharmacol. 2020;178:114100. https://doi.org/10.1016/j.bcp.2020.114100.

Article  CAS  PubMed  Google Scholar 

Raut GK, Manchineela S, Chakrabarti M, et al. Imine stilbene analog ameliorate isoproterenol-induced cardiac hypertrophy and hydrogen peroxide-induced apoptosis. Free Radic Biol Med. 2020;153:80–8. https://doi.org/10.1016/j.freeradbiomed.2020.04.014.

Article  CAS  PubMed  Google Scholar 

Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2011;31:4577–87. https://doi.org/10.1038/onc.2011.621.

Article  CAS  Google Scholar 

Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Front Genet. 2015;6:2. https://doi.org/10.3389/fgene.2015.00002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adelman K, Egan E. Non-coding RNA: more uses for genomic junk. Nature. 2017;543:183–5. https://doi.org/10.1038/543183a.

Article  CAS  PubMed  Google Scholar 

Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116:737–50. https://doi.org/10.1161/CIRCRESAHA.116.302521.

Article  CAS  PubMed  Google Scholar 

Bär C, Chatterjee S, Thum T. Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation. 2016;134:1484–99. https://doi.org/10.1161/CIRCULATIONAHA.116.023686.

Article  CAS  PubMed  Google Scholar 

Wang Z, Zhang XJ, Ji YX, et al. The long noncoding RNA chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med. 2016;22:1131–9. https://doi.org/10.1038/nm.4179.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9. https://doi.org/10.1038/nrg2521.

Article  CAS  PubMed  Google Scholar 

Chen J, Zhang J, Gao Y, et al. LncSEA: a platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res. 2021;49:D969–d980. https://doi.org/10.1093/nar/gkaa806.

Article  CAS  PubMed  Google Scholar 

Liu CY, Zhang YH, Li RB, et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun. 2018;9:29. https://doi.org/10.1038/s41467-017-02280-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Jiao L, Sun L, et al. LncRNA ZFAS1 as a SERCA2a inhibitor to cause intracellular Ca2+ overload and contractile dysfunction in a mouse model of myocardial infarction. Circ Res. 2018;122:1354–68. https://doi.org/10.1161/CIRCRESAHA.117.312117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song C, Qi H, Liu Y, et al. Inhibition of lncRNA Gm15834 attenuates autophagy-mediated myocardial hypertrophy via the miR-30b-3p/ ULK1 axis in mice. Mol Ther. 2021;29:1120–37. https://doi.org/10.1016/j.ymthe.2020.10.024.

Article  CAS  PubMed  Google Scholar 

Barlat I, Maurier F, Duchesne M, Guitard E, Tocque B, Schweighoffer F. A role for Sam68 in cell cycle progression antagonized by a spliced variant within the KH domain. J Biol Chem. 1997;272:3129–32. https://doi.org/10.1074/jbc.272.6.3129.

Article  CAS  PubMed  Google Scholar 

Paronetto MP, Achsel T, Massiello A, Chalfant CE, Sette C. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol. 2007;176:929–39. https://doi.org/10.1083/jcb.200701005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Najib S, Mart¨ªn-Romero C, Gonz¨¢lez-Yanes C, S¨¢nchez-Margalet V. Role of Sam68 as an adaptor protein in signal transduction. Cell Mol Life Sci. 2005;62:36–43. https://doi.org/10.1007/s00018-004-4309-3.

Article  CAS  PubMed  Google Scholar 

Ramakrishnan P, Baltimore D. Sam68 is required for both NF-κB activation and apoptosis signaling by the TNF receptor. Mol Cell. 2011;43:167–79. https://doi.org/10.1016/j.molcel.2011.05.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu K, Sun X, Wier EM, et al. Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-κB activation. Elife. 2016;5:e15018. https://doi.org/10.7554/eLife.15018.

Article  PubMed  PubMed Central  Google Scholar 

Hall G, Hasday JD, Rogers TB. Regulating the regulator: NF-kappaB signaling in heart. J Mol Cell Cardiol. 2006;41. https://doi.org/10.1016/j.yjmcc.2006.07.006.:580 – 91.

Castello A, Fischer B, Hentze MW, Preiss T. RNA-binding proteins in mendelian disease. Trends Genet. 2013;29:318–27. https://doi.org/10.1016/j.tig.2013.01.004.

Article  CAS  PubMed  Google Scholar 

Chen CY, Shyu AB. Emerging mechanisms of mRNP remodeling regulation. Wiley Interdiscip Rev RNA. 2014;5:713–22. https://doi.org/10.1002/wrna.1241.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo X, He S, Hu Y, Liu J, Chen X. Sp1-induced LncRNA CTBP1-AS2 is a novel regulator in cardiomyocyte hypertrophy by interacting with FUS to stabilize TLR4. Cardiovasc Pathol. 2019;42:21–9. https://doi.org/10.1016/j.carpath.2019.04.005.

Article  CAS  PubMed  Google Scholar 

Chen C, Liu M, Tang Y, et al. LncRNA H19 is involved in myocardial ischemic preconditioning via increasing the stability of nucleol in protein. J Cell Physiol. 2020;235:5985–94. https://doi.org/10.1002/jcp.29524.

Article  CAS  PubMed  Google Scholar 

Xu Z, Mo Y, Li X, et al. The novel LncRNA AK035396 drives cardiomyocyte apoptosis through Mterf1 in myocardial ischemia/reperfusion injury. Front Cell Dev Biol. 2021;9:773381. https://doi.org/10.3389/fcell.2021.773381.

Article  PubMed  PubMed Central  Google Scholar 

Mart¨ªn-Romero C, S¨¢nchez-Margalet V. Human leptin activates PI3K and MAPK pathways in human peripheral blood mononuclear cells: possible role of Sam68. Cell Immunol. 2001;212:83–91. https://doi.org/10.1006/cimm.2001.1851.

Article  CAS  Google Scholar 

Kunkel GT, Wang X. Sam68 guest STARs in TNF-α signaling. Mol Cell. 2011;43(2):157–8. https://doi.org/10.1016/j.molcel.2011.07.004.

Article  CAS  PubMed  Google Scholar 

Tomalka JA, de Jesus TJ, Ramakrishnan P. Sam68 is a regulator of toll-like receptor signaling. Cell Mol Immunol. 2017;14:107–17. https://doi.org/10.1038/cmi.2016.32.

Article  CAS  PubMed  Google Scholar 

Zelarayan L, Renger A, Noack C, et al. NF-kappaB activation is required for adaptive cardiac hypertrophy. Cardiovasc Res. 2009;84:416–24. https://doi.org/10.1093/cvr/cvp237.

Article  CAS  PubMed  Google Scholar 

Hong HQ, Lu J, Fang XL, et al. G3BP2 is involved in isoproterenol-induced cardiac hypertrophy through activating the NF-κB signaling pathway. Acta Pharmacol Sin. 2018;39:184–94. https://doi.org/10.1038/aps.2017.58.

Article  CAS  PubMed  Google Scholar 

Wang GJ, Wang HX, Yao YS, Guo LY, Liu P. The role of Ca2+/calmodulin-dependent protein kinase II and calcineurin in TNF-α-induced myocardial hypertrophy. Braz J Med Biol Res. 2012;45:1045–51. https://doi.org/10.1590/s0100-879x2012007500121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Tang F, Yang Y, et al. Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-κB/PGC-1α signaling mediated energy biosynthesis. PLoS ONE. 2015;10:e0118759. https://doi.org/10.1371/journal.pone.0118759.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S, Wang G, Zheng N, et al. HIMF (hypoxia-induced mitogenic factor)-IL (interleukin)-6 signaling mediates cardiomyocyte-fibroblast crosstalk to promote cardiac hypertrophy and fibrosis. Hypertension. 2019;73:1058–70. https://doi.org/10.1161/HYPERTENSIONAHA.118.12267.

Article 

留言 (0)

沒有登入
gif