Modular chemoenzymatic synthesis of ten fusicoccane diterpenoids

De Boer, A. H. & de Vries-van Leeuwen, I. J. Fusicoccanes: diterpenes with surprising biological functions. Trends Plant Sci. 17, 360–368 (2012).

Article  PubMed  Google Scholar 

Ohkanda, J. Fusicoccin: a chemical modulator for 14-3-3 proteins. Chem. Lett. 50, 57–67 (2021).

Article  CAS  Google Scholar 

Sengupta, A., Liriano, J., Bienkiewicz, E. A., Miller, B. G. & Frederich, J. H. Probing the 14-3-3 isoform-specificity profile of protein-protein interactions stabilized by fusicoccin A. ACS Omega 5, 25029–25035 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molzan, M. et al. Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chem. Biol. 8, 1869–1875 (2013).

Article  CAS  PubMed  Google Scholar 

Zheng, D. et al. Cytotoxic fusicoccane-type diterpenoids from Streptomyces violascens isolated from Ailuropoda melanoleuca feces. J. Nat. Prod. 80, 837–844 (2017).

Article  CAS  PubMed  Google Scholar 

Kim, S., Shin, D.-S., Lee, T. & Oh, K.-B. Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J. Nat. Prod. 67, 448–450 (2004).

Article  CAS  PubMed  Google Scholar 

Stevers, L. M. et al. Modulators of 14-3-3 protein-protein interactions. J. Med. Chem. 61, 3755–3778 (2018).

Article  CAS  PubMed  Google Scholar 

Ikejiri, F., Honma, Y., Okada, T., Urano, T. & Suzumiya, J. Cotylenin A and tyrosine kinase inhibitors synergistically inhibit the growth of chronic myeloid leukemia cells. Int. J. Oncol. 52, 2061–2068 (2018).

CAS  PubMed  Google Scholar 

Kasukabe, T., Okabe-Kado, J. & Honma, Y. Cotylenin A, a new differentiation inducer, and rapamycin cooperatively inhibit growth of cancer cells through induction of cyclin G2. Cancer Sci. 99, 1693–1698 (2008).

Article  CAS  PubMed  Google Scholar 

Asahi, K. et al. Cotylenin A, a plant-growth regulator, induces the differentiation in murine and human myeloid leukemia cells. Biochem. Biophys. Res. Commun. 238, 758–763 (1997).

Article  CAS  PubMed  Google Scholar 

Anders, C. et al. A semisynthetic fusicoccane stabilizes a protein-protein interaction and enhances the expression of K+ channels at the cell surface. Chem. Biol. 20, 583–593 (2013).

Article  CAS  PubMed  Google Scholar 

Hu, Z. et al. Fusicoccane-derived diterpenoids from Alternaria brassicicola: investigation of the structure–stability relationship and discovery of an IKKβ inhibitor. Org. Lett. 20, 5198–5202 (2018).

Article  CAS  PubMed  Google Scholar 

Li, F. et al. Modified fusicoccane-type diterpenoids from Alternaria brassicicola. J. Nat. Prod. 83, 1931–1938 (2020).

Article  CAS  PubMed  Google Scholar 

Tang, Y. et al. Structural revisions of a class of natural products: scaffolds of aglycon analogues of fusicoccins and cotylenins isolated from fungi. Angew. Chem. Int. Ed. 55, 4069–4073 (2016).

Article  CAS  Google Scholar 

Ohkanda, J. et al. Structural effect of fusicoccin upon upregulation of 14-3-3 phospholigand interaction and cytotoxic activity. Chem. Eur. J. 24, 16066–16071 (2018).

Article  CAS  PubMed  Google Scholar 

Inoue, T. et al. Semisynthesis and biological evaluation of a cotylenin A mimic derived from fusicoccin A. Bioorg. Med. Chem. Lett. 28, 646–650 (2018).

Article  CAS  PubMed  Google Scholar 

Ono, Y. et al. Dioxygenases, key enzymes to determine the aglycon structures of fusicoccin and brassicicene, diterpene compounds produced by fungi. J. Am. Chem. Soc. 133, 2548–2555 (2011).

Article  CAS  PubMed  Google Scholar 

Kato, N., Okamoto, H. & Takeshita, H. Total synthesis of optically active cotylenol, a fungal metabolite having a leaf growth activity. Intramolecular ene reaction for an eight-membered ring formation. Tetrahedron 52, 3921–3932 (1996).

Article  CAS  Google Scholar 

Williams, D. R., Robinson, L. A., Nevill, C. R. & Reddy, J. P. Strategies for the synthesis of fusicoccanes by Nazarov reactions of dolabelladienones: total synthesis of (+)-fusicoauritone. Angew. Chem. Int. Ed. 46, 915–918 (2007).

Article  CAS  Google Scholar 

Uwamori, M., Osada, R., Sugiyama, R., Nagatani, K. & Nakada, M. Enantioselective total synthesis of cotylenin A. J. Am. Chem. Soc. 142, 5556–5561 (2020).

Article  CAS  PubMed  Google Scholar 

Chen, B. et al. A two-phase approach to fusicoccane synthesis to uncover a compound that reduces tumourigenesis in pancreatic cancer cells. Angew. Chem. Int. Ed. 61, e202117476 (2022).

Article  CAS  Google Scholar 

Wang, Y.-Q., Xu, K., Min, L. & Li, C.-C. Asymmetric total syntheses of hypoestin A, albolic acid, and ceroplastol II. J. Am. Chem. Soc. 144, 10162–10167 (2022).

Article  CAS  PubMed  Google Scholar 

Sims, N. J., Bonnet, W. C., Lawson, D. M. & Wood, J. L. Enantioselective total synthesis if (+)-alterbrassicicene C. J. Am. Chem. Soc. 145, 37–40 (2023).

Article  CAS  PubMed  Google Scholar 

Zhang, X. et al. Divergent synthesis of complex diterpenes via a hybrid oxidative approach. Science 369, 799–806 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tazawa, A. et al. Total biosynthesis of brassicicenes: identification of a key enzyme for skeletal diversification. Org. Lett. 20, 6178–6182 (2018).

Article  CAS  PubMed  Google Scholar 

Chakrabarty, S., Wang, Y., Perkins, J. C. & Narayan, A. R. H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev. 49, 8137–8155 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fasan, R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2, 647–666 (2012).

Article  CAS  Google Scholar 

Lange, G. L., Neider, E. E., Orrom, W. J. & Wallace, D. J. Synthesis of the spirosesquiterpene (–)-acorenone and related cyclopentanoid monoterpenes. Can. J. Chem. 56, 1628–1633 (1978).

Article  CAS  Google Scholar 

Uroos, M., Lewis, W., Blake, A. J. & Hayes, C. J. Total synthesis of (+)-cymbodiacetal: a re-evaluation of the biomimetic route. J. Org. Chem. 75, 8465–8470 (2010).

Article  CAS  PubMed  Google Scholar 

Fürstner, A. & Shi, N. Nozaki–Hiyama–Kishi reactions catalytic in chromium. J. Am. Chem. Soc. 118, 12349–12357 (1996).

Article  Google Scholar 

Cope, A. C., Martin, M. M. & McKervey, M. A. Transannular reactions in medium-sized rings. Q. Rev. Chem. Soc. 20, 119–152 (1966).

Article  CAS  Google Scholar 

Kilpatrick, M. & Luborsky, F. E. The conductance and vapor pressure of boron trifluoride in anhydrous hydrofuloric acid. J. Am. Chem. Soc. 76, 5865–5868 (1954).

Article  CAS  Google Scholar 

Vedejs, E., Engler, D. A. & Telschow, J. E. Transition-metal peroxide reactions. Synthesis of α-hydroxycarbonyl compounds from enolates. J. Org. Chem. 43, 188–196 (1978).

Article  CAS  Google Scholar 

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

Article  CAS  PubMed  Google Scholar 

Jiang, Y. & Renata, H. Finding superior biocatalysts via homolog screening. Chem Catal. 2, 2471–2480 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kille, S. et al. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth. Biol. 2, 83–92 (2013).

Article  CAS  PubMed  Google Scholar 

Li, F., Deng, H. & Renata, H. Remote B-ring oxidation of sclareol with an engineered P450 facilitates divergent access to complex terpenoids. J. Am. Chem. Soc. 144, 7616–7621 (2022).

Article  CAS  PubMed  Google Scholar 

Li, J., Li, F., King-Smith, E. & Renata, H. Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids. Nat. Chem. 12, 173–179 (2020).

Article  CAS 

留言 (0)

沒有登入
gif