A lithium–aluminium heterobimetallic dimetallocene

Kealy, T. J. & Pauson, P. L. A new type of organo-ion compound. Nature 168, 1039–1040 (1951).

Article  CAS  Google Scholar 

Miller, S. A., Tebboth, J. A. & Tremaine, J. F. Dicyclopentadienyliron. J. Chem. Soc. https://doi.org/10.1039/JR9520000632 (1952).

Adams, R. D. Foreword. J. Organomet. Chem. 637–639, 1 (2001).

Article  Google Scholar 

Malischewski, M., Adelhardt, M., Sutter, J., Meyer, K. & Seppelt, K. Isolation and structural and electronic characterization of salts of the decamethylferrocene dication. Science 353, 678–682 (2016).

Article  CAS  PubMed  Google Scholar 

Roy, G. et al. Ferrocene as an iconic redox marker: from solution chemistry to molecular electronic devices. Coord. Chem. Rev. 473, 214816 (2022).

Article  CAS  Google Scholar 

Neuse, E. W. Macromolecular ferrocene compounds as cancer drug models. J. Inorg. Organomet. Polym. Mater. 15, 3–31 (2005).

Article  CAS  Google Scholar 

Delferro, M. & Marks, T. J. Multinuclear olefin polymerization catalysts. Chem. Rev. 111, 2450–2485 (2011).

Article  CAS  PubMed  Google Scholar 

Schäfer, A. Ferrocene and Related Metallocene Polymers. Compr. Organomet. Chem. IV 14, 3–22 (2022).

Google Scholar 

Štěpnička, P. Forever young: the first seventy years of ferrocene. Dalton Trans. 51, 8085–8102 (2022).

Article  PubMed  Google Scholar 

Chirik, P. J. Group 4 transition metal sandwich complexes: still fresh after almost 60 years. Organometallics 29, 1500–1517 (2010).

Article  CAS  Google Scholar 

Beswick, M. A., Palmer, J. S. & Wright, D. S. p-Block metallocenes—the other side of the coin. Chem. Soc. Rev. 27, 225–232 (1998).

Article  CAS  Google Scholar 

Baguli, S., Mondal, S., Mandal, C., Goswami, S. & Mukherjee, D. Cyclopentadienyl complexes of the alkaline earths in light of the periodic trends. Chem. Asian J. 17, e202100962 (2022).

Article  CAS  PubMed  Google Scholar 

Schäfer, S., Kaufmann, S., Rösch, E. S. & Roesky, P. W. Divalent metallocenes of the lanthanides—a guideline to properties and reactivity. Chem. Soc. Rev. 52, 4006–4045 (2023).

Article  PubMed  Google Scholar 

McClain, K. R. et al. Divalent lanthanide metallocene complexes with a linear coordination geometry and pronounced 6s–5d orbital mixing. J. Am. Chem. Soc. 144, 22193–22201 (2022).

Article  CAS  PubMed  Google Scholar 

Casado, C. M., Alonso, B. & García-Armada, M. P. Ferrocenes and other sandwich complexes of iron. Compr. Organomet. Chem. IV 7, 3–45 (2022).

Google Scholar 

Long, N. J. Metallocenes—An Introduction to Sandwich Complexes (Blackwell Scientific Publications, 1998).

Resa, I., Carmona, E., Gutierrez-Puebla, E. & Monge, A. Decamethyldizincocene, a stable compound of Zn(I) with a Zn–Zn bond. Science 305, 1136–1138 (2004).

Article  CAS  PubMed  Google Scholar 

Grirrane, A. et al. Zinc–zinc bonded zincocene structures. Synthesis and characterization of Zn2(η5-C5Me5)2 and Zn2(η5-C5Me4Et)2. J. Am. Chem. Soc. 129, 693–703 (2007).

Article  CAS  PubMed  Google Scholar 

Schneider, J. J., Goddard, R., Werner, S. & Krüger, C. Reactivity of cobalt atoms towards 1,2,3,4,5-pentamethylcyclopentadienyl: synthesis and structure of bis(η5-pentamethylcyclopentadienyl)-(μ2-η5:η5-pentamethylcyclopentadienyl)dicobalt and bis(η5-pentamethylcyclopentadienyl)dicobalt. Angew. Chem. Int. Ed. Engl. 30, 1124–1126 (1991).

Article  Google Scholar 

Kersten, J. L. et al. “[Cp*Co=CoCp*]” is a hydride. Angew. Chem. Int. Ed. Engl. 31, 1341–1343 (1992).

Article  Google Scholar 

Schneider, J. J. On the reaction of pentamethylcyclopentadiene with cobalt atoms: a reexamination. Angew. Chem. Int. Ed. Engl. 31, 1392 (1992).

Article  Google Scholar 

Gould, C. A. et al. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 375, 198–202 (2022).

Article  CAS  PubMed  Google Scholar 

Lauk. S. & Schäfer, A. Pentaisopropyl cyclopentadienyl: an overview across the periodic table. Eur. J. Inorg. Chem. https://doi.org/10.1002/ejic.202100770 (2021).

Xie, Y., Schaefer, H. F. III & Jemmis, E. D. Characteristics of novel sandwiched beryllium, magnesium, and calcium dimers: C5H5BeBeC5H5, C5H5MgMgC5H5, and C5H5CaCaC5H5. Chem. Phys. Lett. 402, 414–421 (2005).

Article  CAS  Google Scholar 

Kan, Y. The nature of metal–metal bond of the dimetallocene complexes [M2(η5-C5R5)2] (M=Zn, Cd, Hg; R=H, Me): an energy decomposition analysis. J. Mol. Struct. THEOCHEM 805, 127–132 (2007).

Li, X. et al. Metal–metal and metal–ligand bonds in (η5-C5H5)2M2 (M=Be, Mg, Ca, Ni, Cu, Zn). Organometallics 32, 1060–1066 (2013).

Article  CAS  Google Scholar 

Velazquez, A., Fernández, I., Frenking, G. & Merino, G. Multimetallocenes. A theoretical study. Organometallics 26, 4731–4736 (2007).

Article  CAS  Google Scholar 

Wang, C.-Z. et al. Actinide (An=Th–Pu) dimetallocenes: promising candidates for metal–metal multiple bonds. Dalton Trans. 44, 17045–17053 (2015).

Article  CAS  PubMed  Google Scholar 

Boronski, J. T., Crumpton, A. E., Wales, L. L. & Aldridge, S. Diberyllocene, a stable compound of Be(I) with a Be–Be bond. Science 380, 1147–1149 (2023).

Article  CAS  PubMed  Google Scholar 

Jutzi, P. The pentamethylcyclopentadienylsilicon(II) cation: synthesis, characterization, and reactivity. Chem. Eur. J. 20, 9192–9207 (2014).

Article  CAS  PubMed  Google Scholar 

Jutzi, P., Klipp, A., Mix, A., Neumann, B. & Stammler, H.-G. 1.2-Bis(pentamethylcyclopentadienyl)tetrachlorodisilane and its reduction to decamethylsilicocene. Silicon Chem. 3, 151–156 (2007).

Article  Google Scholar 

Timoshkin, A. Y. & Schaefer, H. F. Donor–acceptor sandwiches of main-group elements. Organometallics 24, 3343–3345 (2005).

Article  CAS  Google Scholar 

He, N., Xie, H.-b & Ding, Y.-h Can donor–acceptor bonded dinuclear metallocenes exist? A computational study on the stability of CpM′–MCp (M′=B, Al, Ga, In, Tl; M=Li, Na, K) and its isomers. Organometallics 26, 6839–6843 (2007).

Article  CAS  Google Scholar 

Huo, S., Meng, D., Zhang, X., Meng, L. & Li, X. Bonding analysis of the donor–acceptor sandwiches CpE-MCp (E=B, Al, Ga; M=Li, Na, K; Cp=η5-C5H5). J. Mol. Model. 20, 2455–2463 (2014).

Article  PubMed  Google Scholar 

Dohmeier, C., Baum, E., Ecker, A., Köppe, R. & Schnöckel, H. Pentabenzylcyclopentadienides of lithium. Organometallics 15, 4702–4706 (1996).

Article  CAS  Google Scholar 

Sitzmann, H., Lappert, M. F., Dohmeier, C., Üffing, C. & Schnöckel, H. Cyclopentadienylderivate von aluminium(I). J. Organomet. Chem. 561, 203–208 (1998).

Article  CAS  Google Scholar 

Dohmeier, C., Robl, C., Tacke, M. & Schnöckel, H. The tetrameric aluminum(I) compound [4. Angew. Chem. Int. Ed. Engl. 30, 564–565 (1991).

Dabringhaus, P., Willrett, J. & Krossing, I. Synthesis of a low valent Al4+ cluster cation salt. Nat. Chem. 14, 1151–1157 (2022).

Article  CAS  PubMed  Google Scholar 

Hofmann, A., Tröster, T., Kupfer, T. & Braunschweig, H. Monomeric Cp3tAl(I): synthesis, reactivity, and the concept of valence isomerism. Chem. Sci. 10, 3421–3428 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).

Article  CAS  Google Scholar 

Cui, C. et al. Synthesis and structure of a monomeric aluminum(I) compound [Al] (Ar=2,6-iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Ed. 39, 4274–4276 (2000).

Article  CAS  Google Scholar 

Queen, J. D., Lehmann, A., Fettinger, J. C., Tuononen, H. M. & Power, P. P. The monomeric alanediyl:AlAriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2): an organoaluminum(I) compound with a one-coordinate aluminum atom. J. Am. Chem. Soc. 142, 20554–20559 (2020). .

Li, X., Cheng, X., Song, H. & Cui, C. Synthesis of HC[(CBut)(NAr)]2Al (Ar = 2,6-Pri2C6H3) and its reaction with isocyanides, a bulky azide, and H2O. Organometallics 26, 1039–1043 (2007).

Article  CAS  Google Scholar 

Zhang, X. & Liu, L. L. A free aluminylene with diverse σ-donating and doubly σ/π-accepting ligand features for transition metals. Angew. Chem. Int. Ed. 60, 27062–27069 (2021).

Article  CAS  Google Scholar 

Zhang, X. & Liu, L. L. Reactivity of a free aluminylene towards Boron Lewis acids: accessing aluminum–boron-bonded species. Eur. J. Inorg. Chem. https://doi.org/10.1002/ejic.202300157 (2023).

Hinz, A. & Müller, M. P. Attempted reduction of a carbazolyl-diiodoalane. Chem. Commun. 57, 12532–12535 (2021).

Article  CAS  Google Scholar 

Zhang, X., Mei, Y. & Liu, L. L. Free aluminylenes: an emerging class of compounds. Chem. Eur. J. 28, e202202102 (2022).

Article  CAS  PubMed  Google Scholar 

Dohmeier, C., Loos, D. & Schnöckel, H. Aluminum(I) and gallium(I) compounds: syntheses, structures, and reactions. Angew. Chem. Int. Ed. Engl. 35, 129–149 (1996).

Article  CAS 

留言 (0)

沒有登入
gif