Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins

Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tiessen, A., Pérez-Rodríguez, P. & Delaye-Arredondo, L. J. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes. BMC Res. Notes 5, 85 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandecki, W. A method for construction of long randomized open reading frames and polypeptides. Protein Eng. 3, 221–226 (1990).

Article  CAS  PubMed  Google Scholar 

Prijambada, I. D. et al. Solubility of artificial proteins with random sequences. FEBS Lett. 382, 21–25 (1996).

Article  CAS  PubMed  Google Scholar 

Keefe, A. D. & Szostak, J. W. Functional proteins from a random-sequence library. Nature 410, 715–718 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen, R. A. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976).

Article  CAS  PubMed  Google Scholar 

O’Brien, P. J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105 (1999).

Article  PubMed  Google Scholar 

Colin, P.-Y. et al. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008 (2015).

Article  CAS  PubMed  Google Scholar 

Seelig, B. & Szostak, J. W. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chao, F.-A. et al. Structure and dynamics of a primordial catalytic fold generated by in vitro evolution. Nat. Chem. Biol. 9, 81–83 (2013).

Article  CAS  PubMed  Google Scholar 

Hilvert, D. Design of protein catalysts. Annu. Rev. Biochem. 82, 447–470 (2013).

Article  CAS  PubMed  Google Scholar 

Eck, R. V. & Dayhoff, M. O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152, 363–366 (1966).

Article  CAS  PubMed  Google Scholar 

Romero Romero, M. L., Rabin, A. & Tawfik, D. S. Functional proteins from short peptides: Dayhoff’s hypothesis turns 50. Angew. Chem. Int. Ed. 55, 15966–15971 (2016).

Article  CAS  Google Scholar 

Wei, Y., Kim, S., Fela, D., Baum, J. & Hecht, M. H. Solution structure of a de novo protein from a designed combinatorial library. Proc. Natl Acad. Sci. USA 100, 13270–13273 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei, Y. et al. Stably folded de novo proteins from a designed combinatorial library. Protein Sci. 12, 92–102 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferris, J. P. Catalysis and prebiotic RNA synthesis. Orig. Life Evol. Biosph. 23, 307–315 (1993).

Article  CAS  PubMed  Google Scholar 

Bray, M. S. et al. Multiple prebiotic metals mediate translation. Proc. Natl Acad. Sci. USA 115, 12164–12169 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muchowska, K. B. et al. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M. & Hecht, M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993).

Article  CAS  PubMed  Google Scholar 

Karas, C. & Hecht, M. A strategy for combinatorial cavity design in de novo proteins. Life 10, 9 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colin, P.-Y., Zinchenko, A. & Hollfelder, F. Enzyme engineering in biomimetic compartments. Curr. Opin. Struct. Biol. 33, 42–51 (2015).

Article  CAS  PubMed  Google Scholar 

Gantz, M., Aleku, G. A. & Hollfelder, F. Ultrahigh-throughput screening in microfluidic droplets: a faster route to new enzymes. Trends Biochem. Sci. 47, 451–452 (2022).

Article  CAS  PubMed  Google Scholar 

Baret, J.-C. et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9, 1850–1858 (2009).

Article  PubMed  Google Scholar 

Fowler, D. M. et al. High-resolution mapping of protein sequence-function relationships. Nat. Methods 7, 741–746 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. USA 108, 7896–7901 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larsen, A. C. et al. A general strategy for expanding polymerase function by droplet microfluidics. Nat. Commun. 7, 11235 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Check Hayden, E. Chemistry: designer debacle. Nature 453, 275–278 (2008).

Article  CAS  Google Scholar 

O’Brien, P. J. & Herschlag, D. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. Biochemistry 40, 5691–5699 (2001).

Article  PubMed  Google Scholar 

Nielsen, L. D., Monard, D. & Rickenberg, H. V. Cyclic 3′,5′-adenosine monophosphate phosphodiesterase of Escherichia coli. J. Bacteriol. 116, 857–866 (1973).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imamura, R. et al. Identification of the cpdA gene encoding cyclic 3ʹ,5ʹ-adenosine monophosphate phosphodiesterase in Escherichia coli. J. Biol. Chem. 271, 25423–25429 (1996).

Article  CAS  PubMed  Google Scholar 

Schwer, B., Khalid, F. & Shuman, S. Mechanistic insights into the manganese-dependent phosphodiesterase activity of yeast Dbr1 with bis-p-nitrophenylphosphate and branched RNA substrates. RNA 22, 1819–1827 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

Article  CAS  PubMed  Google Scholar 

Hou, M. et al. Protein multiple conformation prediction using multi-objective evolution algorithm. Interdiscip. Sci. Comput. Life Sci. https://doi.org/10.1007/s12539-023-00597-5 (2024).

Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

Article  CAS  PubMed  Google Scholar 

Copley, S. D., Newton, M. S. & Widney, K. A. How to recruit a promiscuous enzyme to serve a new function. Biochemistry 62, 300–308 (2023).

Article  CAS  PubMed  Google Scholar 

Radzicka, A. & Wolfenden, R. A proficient enzyme. Science 267, 90–93 (1995).

Article 

留言 (0)

沒有登入
gif