Build and operation of a custom 3D, multicolor, single-molecule localization microscope

Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

Article  CAS  PubMed  Google Scholar 

Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heilemann, M., Van De Linde, S., Mukherjee, A. & Sauer, M. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Ed. Engl. 48, 6903–6908 (2009).

Article  CAS  PubMed  Google Scholar 

Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

Article  CAS  PubMed  Google Scholar 

Martens, K. J. A. et al. Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nat. Commun. 10, 3552 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Auer, A. et al. Nanometer-scale multiplexed super-resolution imaging with an economic 3D-DNA-PAINT microscope. ChemPhysChem 19, 3024–3034 (2018).

Article  CAS  PubMed  Google Scholar 

Ma, H., Fu, R., Xu, J. & Liu, Y. A simple and cost-effective setup for super-resolution localization microscopy. Sci. Rep. 7, 1542 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Diederich, B. et al. Nanoscopy on the chea(i)p. Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.283085 (2020).

Zehrer, A. C., Martin-Villalba, A., Diederich, B. & Ewers, H. An open-source, high resolution, automated fluorescence microscope. eLife 12, RP89826 (2023).

Article  Google Scholar 

Alsamsam, M. N., Kopūstas, A., Jurevičiūtė, M. & Tutkus, M. The miEye: bench-top super-resolution microscope with cost-effective equipment. HardwareX 12, e00368 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Coelho, S. et al. Ultraprecise single-molecule localization microscopy enables in situ distance measurements in intact cells. Sci. Adv. 6, eaay8271 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mau, A., Friedl, K., Leterrier, C., Bourg, N. & Lévêque-Fort, S. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields. Nat. Commun. 12, 3077 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stehr, F., Stein, J., Schueder, F., Schwille, P. & Jungmann, R. Flat-top TIRF illumination boosts DNA-PAINT imaging and quantification. Nat. Commun. 10, 1268 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Khaw, I. et al. Flat-field illumination for quantitative fluorescence imaging. Opt. Express 26, 15276 (2018).

Article  CAS  PubMed  Google Scholar 

Niederauer, C., Seynen, M., Zomerdijk, J., Kamp, M. & Ganzinger, K. A. The K2: open-source simultaneous triple-color TIRF microscope for live-cell and single-molecule imaging. HardwareX 13, e00404 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Jabermoradi, A., Yang, S., Gobes, M. I., Van Duynhoven, J. P. M. & Hohlbein, J. Enabling single-molecule localization microscopy in turbid food emulsions. Philos. Trans. R. Soc. A. 380, 20200164 (2022).

Article  CAS  Google Scholar 

Li, Y. et al. Global fitting for high-accuracy multi-channel single-molecule localization. Nat. Commun. 13, 3133 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pavani, S. R. P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danial, J. S. H. et al. Constructing a cost-efficient, high-throughput and high-quality single-molecule localization microscope for super-resolution imaging. Nat. Protoc. 17, 2570–2619 (2022).

Article  CAS  PubMed  Google Scholar 

Carter, N., Cross, R. & Martin, D. Warwick open-source microscope. https://wosmic.org/ (2016).

Edwards, J., Whitley, K., Peneti, S., Cesbron, Y. & Holden, S. LifeHack microscope. GitHub https://github.com/HoldenLab/LifeHack (2021).

Deschamps, J., Rowald, A. & Ries, J. Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy. Opt. Express 24, 28080 (2016).

Article  CAS  PubMed  Google Scholar 

Li, Y. et al. Real-time 3D single-molecule localization using experimental point spread functions. Nat. Methods 15, 367–369 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deschamps, J. & Ries, J. EMU: reconfigurable graphical user interfaces for Micro-Manager. BMC Bioinforma. 21, 456 (2020).

Article  Google Scholar 

Diekmann, R. et al. Optimizing imaging speed and excitation intensity for single-molecule localization microscopy. Nat. Methods 17, 909–912 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ries, J. SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat. Methods 17, 870–872 (2020).

Article  CAS  PubMed  Google Scholar 

Dasgupta, A. et al. Direct supercritical angle localization microscopy for nanometer 3D superresolution. Nat. Commun. 12, 1180 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diekmann, R. et al. Photon-free (s)CMOS camera characterization for artifact reduction in high- and super-resolution microscopy. Nat. Commun. 13, 3362 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

Article  CAS  PubMed  Google Scholar 

Mund, M. et al. Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation. Cell 174, 884–896.e17 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mund, M. et al. Clathrin coats partially preassemble and subsequently bend during endocytosis. J. Cell Biol. 222, e202206038 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cieslinski, K. et al. Nanoscale structural organization and stoichiometry of the budding yeast kinetochore. J. Cell Biol. 222, e202209094 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using manager. Curr. Protoc. Mol. Biol. https://doi.org/10.1002/0471142727.mb1420s92 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Deschamps, J., Kieser, C., Hoess, P., Deguchi, T. & Ries, J. MicroFPGA: an affordable FPGA platform for microscope control. HardwareX 13, e00407 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

Article 

留言 (0)

沒有登入
gif