Generation of ‘semi-guided’ cortical organoids with complex neural oscillations

Scuderi, S., Altobelli, G., Cimini, V., Coppola, G. & Vaccarino, F. Cell-to-cell adhesion and neurogenesis in human cortical development: a study comparing 2D monolayers with 3D organoid cultures. Stem Cell Rep. 16, 264–280 (2021).

Article  CAS  Google Scholar 

Centeno, E., Cimarosti, H. & Bithell, A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol. Neurodegener. 13, 27 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Adlakha, Y. Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discov. 9, 221 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grenier, K., Kao, J. & Diamandis, P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol. Psychiatry 25, 254–274 (2020).

Article  PubMed  Google Scholar 

Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

Article  CAS  PubMed  Google Scholar 

Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trujillo, C. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell. Stem Cell. 25, 558–569.e7 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanaka, Y., Cakir, B., Xiang, Y., Sullivan, G. & Park, I. Synthetic analyses of single-cell transcriptome from multiple brain organoids and fetal brain. Cell Rep. 30, 1682–1689 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trujillo, C. et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment. Science 371, eaax2537 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papes, F. et al. Transcription factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat. Commun. 13, 2387 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allison, T. et al. Defining the nature of human pluripotent stem cell-derived interneurons via single-cell analysis. Stem Cell Rep. 16, 2548–2564 (2021).

Article  CAS  Google Scholar 

Delgado, R. et al. Individual human cortical progenitors can produce excitatory and inhibitory neurons. Nature 601, 397–403 (2022).

Article  CAS  PubMed  Google Scholar 

Zourray, C., Kurian, M., Barral, S. & Lignani, G. Electrophysiological properties of human cortical organoids: current state of the art and future directions. Front. Mol. Neurosci. 15, 839366 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiang, Y. et al. Fusion of regionally-specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398.e7 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasca, A. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fiddes, I. et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173, 1356–1369.e22 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700–706 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lancaster, M. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

Article  CAS  PubMed  Google Scholar 

Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharf, T. et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nat. Commun. 13, 4403 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uhlhaas, P., Roux, F., Rodriguez, E., Rotarska-Jagiela, A. & Singer, W. Neural synchrony and the development of cortical networks. Trends Cogn. Sci. 14, 72–80 (2010).

Article  PubMed  Google Scholar 

de Hemptinne, C. et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat. Neurosci. 18, 779–786 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Uhlhaas, P. J. & Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113 (2010).

Article  CAS  PubMed  Google Scholar 

Khan, S. et al. Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc. Natl Acad. Sci. USA 110, 3107–3112 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon, T. & Muotri, A. Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Mol. Psychiatry 28, 83–95 (2023).

Article  PubMed  Google Scholar 

Samarasinghe, R. et al. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat. Neurosci. 24, 1488–1500 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavazza, A. ‘Consciousnessoids’: clues and insights from human cerebral organoids for the study of consciousness. Neurosci. Conscious. 7, niab029 (2021).

Article  PubMed  Google Scholar 

Adams, J. et al. Impact of alcohol exposure on neural development and network formation in human cortical organoids. Mol. Psychiatry 28, 1571–1584 (2023).

Article  CAS  PubMed  Google Scholar 

Mesci, P. et al. Modeling neuro–immune interactions during Zika virus infection. Hum. Mol. Genet. 27, 41–52 (2018).

Article  CAS  PubMed  Google Scholar 

Schley, L. Meet the scientists connecting lab-grown ‘mini brains’ to robots. Discover Magazine https://www.discovermagazine.com/mind/meet-the-scientists-connecting-lab-grown-mini-brains-to-robots (2019).

Marinho, L. et al. The impact of antidepressants on human neurodevelopment: brain organoids as experimental tools. Semin. Cell Dev. Biol. 144, 67–76 (2023).

Article  CAS  PubMed  Google Scholar 

Trujillo, C. et al. Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids. EMBO Mol. Med. 13, e12523 (2021).

Article  CAS  PubMed  Google Scholar 

Adams, J. W., Cugola, F. R. & Muotri, A. R. Brain organoids as tools for modeling human neurodevelopmental disorders. Physiology 34, 365–375 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coelho, L. & Muotri, A. Cortical brain organoid as a model to study microgravity exposure. Artif. Organs 47, 5–7 (2023).

Article  PubMed  Google Scholar 

Standards document. International Society for Stem Cell Research https://www.isscr.org/standards-document (2023).

Lin, M. & Schnitzer, M. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Avansini, S. et al. Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dysplasia human model. Brain 145, 1962–1977 (2022).

Article  PubMed  Google Scholar 

Dalkara, D. et al. In vivo-directed evolution of a new adeno-associated virus for thera

留言 (0)

沒有登入
gif