Identification and validation of microbial biomarkers from cross-cohort datasets using xMarkerFinder

Cullin, N., Azevedo Antunes, C., Straussman, R., Stein-Thoeringer, C. K. & Elinav, E. Microbiome and cancer. Cancer Cell 39, 1317–1341 (2021).

Article  CAS  PubMed  Google Scholar 

LaCourse, K. D., Johnston, C. D. & Bullman, S. The relationship between gastrointestinal cancers and the microbiota. Lancet Gastroenterol. Hepatol. 6, 498–509 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

Article  CAS  PubMed  Google Scholar 

Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224. e214 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65, 1973–1980 (2016).

Article  CAS  PubMed  Google Scholar 

McQuade, J. L., Daniel, C. R., Helmink, B. A. & Wargo, J. A. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 20, e77–e91 (2019).

Article  PubMed  Google Scholar 

Wu, Y. et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat. Commun. 12, 3063 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, N.-N. et al. Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts. Nat. Microbiol. 7, 238–250 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, S. et al. Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin. Genome Biol. 23, 208 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Gao, W. et al. Multimodal metagenomic analysis reveals microbial single nucleotide variants as superior biomarkers for early detection of colorectal cancer. Gut Microbes 15, 2245562 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Zhu, X. et al. Multi-kingdom microbial signatures in excess body weight colorectal cancer based on global metagenomic analysis. Commun. Biol. 7, 24 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, S. et al. Microbial genes outperform species and SNVs as diagnostic markers for Crohn’s disease on multicohort fecal metagenomes empowered by artificial intelligence. Gut Microbes 15, 2221428 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Relman, D. A. The human microbiome and the future practice of medicine. JAMA 314, 1127–1128 (2015).

Article  CAS  PubMed  Google Scholar 

Gao, L. et al. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9, 488–500 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

Article  CAS  PubMed  Google Scholar 

Wang, Z. et al. Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis. Am. J. Respir. Crit. Care Med. 203, 1488–1502 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, J. et al. Signatures of mucosal microbiome in oral squamous cell carcinoma identified using a random forest model. Cancer Manag. Res. 12, 5353–5363 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, L., Liu, Y., Zheng, H. J. & Zhang, C. P. The oral microbiota may have influence on oral cancer. Front. Cell Infect. Microbiol. 9, 476 (2019).

Article  PubMed  Google Scholar 

Zhao, H. et al. Variations in oral microbiota associated with oral cancer. Sci. Rep. 7, 11773 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

Article  PubMed  Google Scholar 

Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083 e1021 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Govaere, O. et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci. Transl. Med. 12, eaba4448 (2020).

Article  CAS  PubMed  Google Scholar 

Pantano, L. et al. Molecular characterization and cell type composition deconvolution of fibrosis in NAFLD. Sci. Rep. 11, 18045 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerhard, G. S. et al. Transcriptomic profiling of obesity-related nonalcoholic steatohepatitis reveals a core set of fibrosis-specific genes. J. Endocr. Soc. 2, 710–726 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Xiao, L., Zhang, F. & Zhao, F. Large-scale microbiome data integration enables robust biomarker identification. Nat. Comput. Sci. 2, 307–316 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wirbel, J. et al. Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biol. 22, 93 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Jiang, J. MIIDL: a Python package for microbial biomarkers identification powered by interpretable deep learning. Preprint at https://arxiv.org/abs/2109.12204 (2021).

Wang, Y. & LeCao, K. A. Managing batch effects in microbiome data. Brief. Bioinform. 21, 1954–1970 (2020).

Article  PubMed  Google Scholar 

Ling, W. et al. Batch effects removal for microbiome data via conditional quantile regression. Nat. Commun. 13, 5418 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibbons, S. M., Duvallet, C. & Alm, E. J. Correcting for batch effects in case-control microbiome studies. PLoS Comput. Biol. 14, e1006102 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Dai, Z., Wong, S. H., Yu, J. & Wei, Y. Batch effects correction for microbiome data with Dirichlet-multinomial regression. Bioinformatics 35, 807–814 (2018).

Article  Google Scholar 

Knight, R. et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422 (2018).

Article  CAS  PubMed  Google Scholar 

Coelho, L. P. et al. NG-meta-profiler: fast processing of metagenomes using NGLess, a domain-specific language. Microbiome 7, 84 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G. Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

Article  PubMed  Google Scholar 

Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).

Article  PubMed  Google Scholar 

Kelly, B. J. et al. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics 31, 2461–2468 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casals-Pascual, C. et al. Microbial diversity in clinical microbiome studies: sample size and statistical power considerations. Gastroenterology 158, 1524–1528 (2020).

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif